Set Symbols
Set Symbols
| |||
---|---|---|---|
Symbol | Symbol | Definition | Example |
{} | - | set, a collection | A={1,2,3,4} , B={3,4,5,6} |
∅ | varnothing | empty set | A={∅} |
∩ | cap | intersection, belonging to set A or B | A∩B={3,4} |
∪ | cup | union, belonging to set A or B | A∪B={1,2,3,4,5,6} |
⊂ | subset | strict subset, A is subset of B | {3,4}⊂{3,4,5,6} |
⊆ | subseteq | subset, A subset of B, A included in B | {3,4}⊆{3,4} |
⊈ | nsubseteq | not subset, A not subset of B | \{6, 7\} \nsubseteq \{3, 4, 5, 6\} |
\supset | supset | strict superset, A superset of B, B not equal to A | \{3, 4, 5, 6\} \supset \{3, 4\} |
\supseteq | supseteq | superset, A subset of B, A includes B | \{3, 4, 5, 6\} \supseteq \{3, 4, 5, 6\} |
\nsupseteq | nsupseteq | not superset, A not superset of B | \{3, 4, 5, 6\} \nsupseteq \{6, 7\} |
\uplus | uplus | multiset union, A plus B = C | A + B = \{ 1, 2, 3, 4, 5, 6 \} |
\in | in | belongs to or element of | B=\{3, 4, 5, 6\} , 3\in B |
\notin | notin | does not belong to | B=\{3, 4, 5, 6\} , 1\notin B |
= | - | equality, both sets the same A=B | \{3, 4, 5, 6\} = \{3, 4, 5, 6\} |
- | - | relative complement, belongs to B but not A | A-B = \{5, 6\} |
\ominus | ominus | symmetric difference, belongs to A or B gut no matches | A \ominus B = \{1, 2, 5, 6\} |
|\;| | - | cardinality, element of set B | |B|=\{3\} |
\mathbb{C} | - | complex number set | \mathbb{C} = \{3, \frac{3}{4}, 13.45, -3.56, ... \} |
\mathbb{N_0} | - | natural number set (with 0) | \mathbb{N_0} = \{ 0, 1, 2, 3, 4, 5, 6, ... \} |
\mathbb{N_1} | - | natural number set (without 0) | \mathbb{N_1} = \{ 1, 2, 3, 4, 5, 6, ... \} |
\mathbb{R} | - | real number set | \mathbb{R} = \{3, \frac{3}{4}, 13.45, -3.56, ... \} |
\mathbb{R}^+ | - | real number set, positive | \mathbb{R} = \{3, \frac{3}{4}, 3.56, ... \} |
\mathbb{R}^- | - | real number set, negative | \mathbb{R} = \{-3, -\frac{3}{4}, -3.56, ... \} |
\mathbb{Q} | - | rational number set | \mathbb{Q} = \{ \frac{0}{1}, -\frac{1}{8}, \frac{3}{2} \} |
\mathbb{Q}^+ | - | rational number set, positive | \mathbb{Q} = \{ \frac{0}{1}, \frac{1}{8}, \frac{3}{2} \} |
\mathbb{Q}^- | - | rational number set, negative | \mathbb{Q} = \{ -\frac{0}{1}, -\frac{1}{8}, -\frac{3}{2} \} |
\mathbb{U} | - | universal set | \mathbb{U} = \{ -3.56, -2, 0, \frac{3}{2}, 13.45, ... \} |
\mathbb{Z} | - | integer number set | \mathbb{Z} = \{ ... , -3, -2, -1, 0, 1, 2, 3, ... \} |
\mathbb{Z}^+ | - | integer number set, positive | \mathbb{Z} = \{ 1, 2, 3, ... \} |
\mathbb{Z}^- | - | integer number set, negative | \mathbb{Z} = \{ ... , -3, -2, -1 \} |