Set Symbols
- This is a list of the most common set symbols.
|
| Symbol | Symbol | Definition | Example |
| \(\{ \; \}\) |
- |
set, a collection |
\(A= \{ 1, 2, 3, 4 \}\) , \(B= \{ 3, 4, 5, 6 \} \) |
| \(\varnothing\) |
varnothing |
empty set |
\(A=\{ \varnothing\} \) |
| \(\cap\) |
cap |
intersection, belonging to set A or B |
\(A\cap B =\{3, 4\}\) |
| \(\cup\) |
cup |
union, belonging to set A or B |
\(A\cup B =\{1, 2, 3, 4, 5, 6\}\) |
| \(\subset\) |
subset |
strict subset, A is subset of B |
\(\{3, 4\} \subset \{3, 4, 5, 6\}\) |
| \(\subseteq\) |
subseteq |
subset, A subset of B, A included in B |
\(\{3, 4\} \subseteq \{3, 4\}\) |
| \(\nsubseteq\) |
nsubseteq |
not subset, A not subset of B |
\(\{6, 7\} \nsubseteq \{3, 4, 5, 6\}\) |
| \(\supset\) |
supset |
strict superset, A superset of B, B not equal to A |
\(\{3, 4, 5, 6\} \supset \{3, 4\}\) |
| \(\supseteq\) |
supseteq |
superset, A subset of B, A includes B |
\(\{3, 4, 5, 6\} \supseteq \{3, 4, 5, 6\}\) |
| \(\nsupseteq\) |
nsupseteq |
not superset, A not superset of B |
\(\{3, 4, 5, 6\} \nsupseteq \{6, 7\}\) |
| \(\uplus\) |
uplus |
multiset union, A plus B = C |
\(A + B = \{ 1, 2, 3, 4, 5, 6 \}\) |
| \(\in\) |
in |
belongs to or element of |
\(B=\{3, 4, 5, 6\}\) , \(3\in B\) |
| \(\notin\) |
notin |
does not belong to |
\(B=\{3, 4, 5, 6\}\) , \(1\notin B\) |
| = |
- |
equality, both sets the same A=B |
\(\{3, 4, 5, 6\} = \{3, 4, 5, 6\}\) |
| \(-\) |
- |
relative complement, belongs to B but not A |
\(A-B = \{5, 6\}\) |
| \(\ominus\) |
ominus |
symmetric difference, belongs to A or B gut no matches |
\(A \ominus B = \{1, 2, 5, 6\}\) |
| \(|\;|\) |
- |
cardinality, element of set B |
\(|B|=\{3\}\) |
| \(\mathbb{C}\) |
- |
complex number set |
\(\mathbb{C} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) |
| \(\mathbb{N_0}\) |
- |
natural number set (with 0) |
\(\mathbb{N_0} = \{ 0, 1, 2, 3, 4, 5, 6, ... \}\) |
| \(\mathbb{N_1}\) |
- |
natural number set (without 0) |
\(\mathbb{N_1} = \{ 1, 2, 3, 4, 5, 6, ... \}\) |
| \(\mathbb{R}\) |
- |
real number set |
\(\mathbb{R} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) |
| \(\mathbb{R}^+\) |
- |
real number set, positive |
\(\mathbb{R} = \{3, \frac{3}{4}, 3.56, ... \}\) |
| \(\mathbb{R}^-\) |
- |
real number set, negative |
\(\mathbb{R} = \{-3, -\frac{3}{4}, -3.56, ... \}\) |
| \(\mathbb{Q}\) |
- |
rational number set |
\(\mathbb{Q} = \{ \frac{0}{1}, -\frac{1}{8}, \frac{3}{2} \}\) |
| \(\mathbb{Q}^+\) |
- |
rational number set, positive |
\(\mathbb{Q} = \{ \frac{0}{1}, \frac{1}{8}, \frac{3}{2} \}\) |
| \(\mathbb{Q}^-\) |
- |
rational number set, negative |
\(\mathbb{Q} = \{ -\frac{0}{1}, -\frac{1}{8}, -\frac{3}{2} \}\) |
| \(\mathbb{U}\) |
- |
universal set |
\(\mathbb{U} = \{ -3.56, -2, 0, \frac{3}{2}, 13.45, ... \}\) |
| \(\mathbb{Z}\) |
- |
integer number set |
\(\mathbb{Z} = \{ ... , -3, -2, -1, 0, 1, 2, 3, ... \}\) |
| \(\mathbb{Z}^+\) |
- |
integer number set, positive |
\(\mathbb{Z} = \{ 1, 2, 3, ... \}\) |
| \(\mathbb{Z}^-\) |
- |
integer number set, negative |
\(\mathbb{Z} = \{ ... , -3, -2, -1 \}\) |