Skip to main content

Set Symbols

Set Symbols

  • This is a list of the most common set symbols.
Symbol    Symbol     DefinitionExample
{} - set, a collection A={1,2,3,4}B={3,4,5,6}
varnothing empty set A={}
cap intersection, belonging to set A or B AB={3,4}
cup union, belonging to set A or B AB={1,2,3,4,5,6}
subset strict subset, A is subset of B {3,4}{3,4,5,6}
subseteq subset, A subset of B, A included in B {3,4}{3,4}
nsubseteq not subset, A not subset of B \{6, 7\} \nsubseteq \{3, 4, 5, 6\}
 \supset supset strict superset, A superset of B, B not equal to A \{3, 4, 5, 6\} \supset \{3, 4\}
 \supseteq supseteq superset, A subset of B, A includes B \{3, 4, 5, 6\} \supseteq \{3, 4, 5, 6\}
\nsupseteq nsupseteq not superset, A not superset of B \{3, 4, 5, 6\} \nsupseteq \{6, 7\}
\uplus uplus multiset union, A plus B = C A + B = \{ 1, 2, 3, 4, 5, 6 \}
\in in belongs to or element of B=\{3, 4, 5, 6\}3\in B
\notin notin does not belong to B=\{3, 4, 5, 6\}1\notin B
= - equality, both sets the same A=B \{3, 4, 5, 6\} = \{3, 4, 5, 6\}
- - relative complement, belongs to B but not A A-B = \{5, 6\}
\ominus ominus symmetric difference, belongs to A or B gut no matches A \ominus B = \{1, 2, 5, 6\}
|\;| - cardinality, element of set B  |B|=\{3\}
\mathbb{C} - complex number set \mathbb{C} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}
\mathbb{N_0} - natural number set (with 0) \mathbb{N_0} = \{ 0, 1, 2, 3, 4, 5, 6, ... \}
\mathbb{N_1} - natural number set (without 0) \mathbb{N_1} = \{ 1, 2, 3, 4, 5, 6, ... \}
\mathbb{R} - real number set \mathbb{R} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}
\mathbb{R}^+ - real number set, positive \mathbb{R} = \{3, \frac{3}{4}, 3.56, ... \}
\mathbb{R}^- - real number set, negative \mathbb{R} = \{-3, -\frac{3}{4}, -3.56, ... \}
\mathbb{Q} - rational number set \mathbb{Q} = \{ \frac{0}{1}, -\frac{1}{8}, \frac{3}{2} \}
\mathbb{Q}^+ - rational number set, positive \mathbb{Q} = \{ \frac{0}{1}, \frac{1}{8}, \frac{3}{2} \}
\mathbb{Q}^- - rational number set, negative \mathbb{Q} = \{ -\frac{0}{1}, -\frac{1}{8}, -\frac{3}{2} \}
\mathbb{U} - universal set \mathbb{U} = \{ -3.56, -2, 0, \frac{3}{2}, 13.45, ... \}
\mathbb{Z} - integer number set \mathbb{Z} = \{ ... , -3, -2, -1, 0, 1, 2, 3, ... \}
\mathbb{Z}^+ - integer number set, positive \mathbb{Z} = \{ 1, 2, 3, ... \}
\mathbb{Z}^- - integer number set, negative \mathbb{Z} = \{ ... , -3, -2, -1 \}

 

Piping Designer Logo 1