Beam Deflection for Pipe Span
Beam Deflection for Pipe Span formula |
||
|
\( \delta \;=\; \dfrac{ 5 \cdot w \cdot L^4 }{ 384 \cdot E \cdot I } \) (Maximum Deflection) \( w \;=\; \dfrac{ 384 \cdot \delta \cdot E \cdot I }{ 5 \cdot L^4 } \) \( L \;=\; \left( \dfrac{ 384 \cdot \delta \cdot E \cdot I }{ 5 \cdot w } \right)^{1/4} \) \( E \;=\; \dfrac{ 5 \cdot w \cdot L^4 }{ 384 \cdot \delta \cdot I } \) \( I \;=\; \dfrac{ 5 \cdot w \cdot L^4 }{ 384 \cdot \delta \cdot E } \) |
||
| Symbol | English | Metric |
| \( \delta \) (Greek Symbol delta) = Maximum Deflection | \(in\) | \(mm\) |
| \( w \) = Uniform Load per Unit Length | \(lbf\;/\;in\) | \(N\;/\;mm\) |
| \( L \) = Span Length | \(ft\) | \(m\) |
| \( E \) = Young's Modulus of the Material | \(lbf\;/\;in^2\) | \(Pa\) |
| \( I \) = Area Moment of Inertia of the Beam's Cross-section | \(in^4\) | \(mm^4\) |
The allowable pipe span between two pipe supports in piping design depends on factors like pipe material, size, wall thickness, fluid properties, and support conditions. It’s typically calculated to ensure the pipe can withstand its own weight, the weight of the fluid, and external loads without excessive deflection or stress. The allowable pipe span is often derived from the beam deflection formula, ensuring that the deflection does not exceed a specified limit (typically 1/360 of the span or a fixed value like 0.1 inches for piping systems).
Uniform Load per Unit Length formula |
||
| \( w \;=\; w_p + w_f + w_i \) (Uniform Load per Unit Length) | ||
| Symbol | English | Metric |
| \( w \) = Uniform Load per Unit Length | \(lbf\;/\;in\) | \(N\;/\;mm\) |
| \( w_p \) = Pipe Weight per Unit Length | \(lbm\;/\;ft\) | \(Pa\) |
| \( w_f \) = Fluid Weight per Unit Length | \(in^4\) | \(mm^4\) |
| \( w_i \) = Insulation Weight | \(in\) | \(mm\) |

