Skip to main content

Simple Circular Curve

 

Simple Circular Curve Formulas

c \;=\;   2 \cdot  r \cdot sin \dfrac{ \theta }{ 2 } 

E \;=\;   r \cdot sec  \dfrac{ \theta }{ 2 } - r 

l \;=\;   \dfrac{ \pi \cdot r \cdot \theta }{ 180 } 

M \;=\;    r - r \cdot cos  \dfrac{ \theta }{ 2 }  

T \;=\;    r \cdot tan  \dfrac{ \theta }{ 2 } 

Symbol English Metric
\theta = angle deg rad
BT = back tangent deg rad
c = chord length ft m
E   = external distance ft m
FT = forward tangent deg rad
l   = length of curve ft m
M   = middle ordinate ft m
\pi = Pi 3.141 592 653 ... 3.141 592 653 ...
PC = point on curve ft m
PI = point of intersection ft m
PT   = point on tangent ft m
r   = radius of curve ft m
T = subtangent deg rad

 A simple circular curve is a curve that is part of a circle.  A circle is defined as the set of all points in a plane that are a given distance (radius) from a given point (center).  A circular curve, then, is a segment of this circle.  Simple circular curve is a curve that does not cross itself.

Piping Designer Logo Slide 1