Signal-to-noise Ratio
Signal-to-noise Ratio formula |
||
| \( SNR \;=\; 10 \cdot log_{10} \left( 1 + \dfrac{ P_s }{ P_n } \right) \) | ||
| Symbol | English | Metric |
| \( SNR \) = Signal-to-noise Ratio | \(dB\) | \(dB\) |
| \( P_s \) = Power of Desired Signal | \(W\) | \(W\) |
| \( P_n \) = Power of the Backbround Noise | \(W\) | \(W\) |
Signal-to-noise ratio, abbreviated as \(SNR\), is a measure used in communications and electronics to compare the level of a desired signal to the level of background noise. It indicates how much stronger the signal is relative to the unwanted noise that can distort or interfere with it. A higher SNR means a clearer and more accurate signal, while a lower SNR indicates that the noise is overpowering the signal, leading to poor quality or data loss. In general, improving the SNR by increasing signal strength or reducing noise results in better system performance and clearer communication.

