Skip to main content

Pressure Loading of Thin-walled Spherical Vessel

Pressure Loading of thin-walled Spherical Vessel formulas

\( \sigma_{sph} \;=\;   \dfrac{ p \cdot r }{ 2 \cdot t  }\) 

\( R \;=\;  \dfrac{  p \cdot r^2 \cdot \left( 1 - v \right)  }{  2 \cdot E \cdot t  }\) 

\( V \;=\;  \dfrac{  2 \cdot p \cdot \pi \cdot r^4 \cdot \left( 1 - v \right) }{  E \cdot t  }\) 

Symbol English Metric
\( \sigma_{sph} \)  (Greek symbol sigma) = stress \(lbf\;/\;in^2\) \(Pa\)
\( p \) = uniform internal pressure \(lbf\;/\;in^2\) \(Pa\)
\( r \) = radius \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( \mu \)  (Greek symbol mu) = Poisson's ratio \( dimensionless \) \( dimensionless \)
\( E \) = modulus of elasticity \(lbf\;/\;in^2\) \(Pa\)
\( R \) = increase in radius \( in \) \( mm \)
\( V \) = increase in volume  \( in^3 \) \( mm^3 \)

 

Piping Designer Logo 1