Radius of Gyration of a Rectangular Angle
Radius of Gyration of a Rectangular Angle Formulas |
||
\( k_x \;=\; \dfrac{ t\cdot y^3 + w \cdot \left( l - y \right)^3 - \left( w - t \right) \cdot \left( l - y - t \right)^3 }{ 3\cdot t \cdot \left( w + l - t \right) } \) \( k_y \;=\; \dfrac{ t\cdot z^3 + l \cdot \left( w - z \right)^3 - \left( l - t \right) \cdot \left( w - z - t \right)^3 }{ 3\cdot t \cdot \left( w + l - t \right) } \) \( k_z \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac { I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac { I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( y \) = height | \( in \) | \( mm \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |
\( z \) = width | \( in \) | \( mm \) |