Skip to main content

Radius of Gyration of a Rectangle

 

Radius of Gyration of a Rectangle formulas

\( k_{x} \;=\;   \dfrac{ a }{ 2 \cdot \sqrt{3} } \) 

\( k_{y} \;=\;   \dfrac{  b }{ 2 \cdot \sqrt{3} } \) 

\( k_{z} \;=\;   \sqrt{  \dfrac{ a^2 + b^2 }{ 2 \cdot \sqrt{3} } } \) 

\( k_{x1} \;=\;  \dfrac{  a }{  \sqrt{3}  }\)

\( k_{y1} \;=\;  \dfrac{  b }{  \sqrt{3} } \)

\( k_{z1} \;=\; \sqrt{  \dfrac{ a^2 + b^2 }{ \sqrt{3} } } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( a, b, c, d \) = edge \( in \) \( mm \)

rectangle 8

Piping Designer Logo 1