Skip to main content

Radius of Gyration of an Unequal I Beam

 

Radius of Gyration of an Unequal I Beam formulas

\( k_{x} \;=\;    \dfrac{    \dfrac{1}{3}  \cdot   \left[  b \cdot  \left(l - C_y \right)^3  +  w \cdot C_{y}{^3}  - \left(b - t \right)   \cdot   \left(l - C_y  - s \right)^3   -  \left(w  -  t \right)   \cdot  \left(C_y  +  s \right)^3    \right]         }{     b\cdot s  + h\cdot t  + w\cdot s}    \) 

\( k_{y} \;=\;     \dfrac{  \sqrt{  s \cdot \left(s^2  +  3 \right) \cdot  \left(w -  t \right)^3  +  2\cdot h\cdot t^3 }            }{          2\cdot \sqrt{6}  \cdot  \sqrt{w\cdot s  +  b\cdot s  +  h\cdot t }  }    \) 

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( C \) = distance from centroid \( in \) \( mm \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( s \) = thickness \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( b \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

I beam unequal 1

Piping Designer Logo 1