Skip to main content

Radius of Gyration of a Zed

 

Radius of Gyration of a Zed formulas

\( k_{x} \;=\;  \sqrt{  \dfrac{  w\cdot l^3 -  c \cdot \left( l - 2\cdot t \right)^3   }{ 12\cdot t \cdot \left[  l +  2 \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{y} \;=\;    \dfrac{l \cdot \left( w + c \right)^3 - 2c^3 \cdot h  - 6\cdot w^2\cdot c\cdot h   }{ 12\cdot t \cdot \left[  l +  2 \cdot \left( w - t \right) \right]    }    \) 

\( k_{z} \;=\;    \sqrt{  k_{x}{^2} + k_{y}{^2}  } \) 

\( k_{x1} \;=\;  \sqrt{  \dfrac{ I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;  \sqrt{  \dfrac{ I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( t \) = thickness \( in \) \( mm \)
\( c \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

Zed beam 1

Piping Designer Logo 1