Skip to main content

Radius of Gyration of a Thin Walled Circle

 

Radius of Gyration of a Thin Walled Circle formulas

\( k_{x} \;=\;   \dfrac{ \sqrt{2}  }{  2  }  \cdot r   \) 

\( k_{y} \;=\;   \dfrac{ \sqrt{2}  }{  2  } \cdot r   \)

\( k_{z} \;=\;   r  \) 

\( k_{x1} \;=\;   \dfrac{ \sqrt{6}  }{  2  } \cdot r   \)

\( k_{y1} \;=\;   \dfrac{ \sqrt{6}  }{  2  } \cdot r   \)

\( k_{z1} \;=\;    \sqrt {3}  \cdot r   \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( r \) = inside radius \( in \) \( mm \)

circle thin wall 4circle 17

 

 

 

 

 

Piping Designer Logo 1