Skip to main content

Radius of Gyration of a Tapered I Beam

 

Radius of Gyration of a Tapered I Beam formulas

\( k_x \;=\;   \sqrt{  \dfrac{  \dfrac{1}{12} \cdot \left[ w\cdot l^3 -  \dfrac{1}{4\cdot g}  \cdot \left( h^4 - L^4  \right)   \right]   }{  l \cdot t  +  2\cdot a \cdot \left( s + n  \right) }   }   \) 

\( k_y \;=\;   \sqrt{  \dfrac{  \dfrac{1}{3} \cdot \left[ w^3 \cdot  \left( l - h  \right)  +  L\cdot t^3  +  \dfrac{g}{4} \cdot \left( w^4 - t^4  \right)   \right]   }{  l \cdot t  +  2\cdot a \cdot \left( s  +  n  \right) }  }   \) 

\( k_z \;=\;   \sqrt{   k_{x}{^2}   +    k_{y}{^2}    } \) 

\( k_{x1} \;=\;   \sqrt{    \dfrac{  I_{x1}  }{ A  }    } \)

\( k_{y1} \;=\;   \sqrt{    \dfrac{  I_{y1}  }{ A  }    } \)

\( k_{z1} \;=\;   \sqrt{   k_{x1}{^2}  +  k_{y1}{^2}     }  \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( L \) = height \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( n \) = thickness \( in \) \( mm \)
\( s \) = thickness \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( a \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

I beam tapered 2

Piping Designer Logo 1