Radius of Gyration of an Isosceles Trapezoid
Radius of Gyration of an Isosceles Trapezoid formulas |
||
\( k_{x} \;=\; \dfrac{ h }{ 6 } \cdot \sqrt{ 2 + \dfrac{ 4 \cdot c \cdot a }{ \left( c + a \right)^2 } } \) \( k_{y} \;=\; \dfrac{ 1 }{ 12 } \cdot \sqrt{ 6 \left( c^2 + a^2 \right) } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ 3 \cdot a + 5 \cdot c }{ 12 \cdot \left( a + c \right) } \cdot a } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( a, b, c, d \) = edge | \( in \) | \( mm \) |
\( h \) = height | \( in \) | \( mm \) |