Skip to main content

Radius of Gyration of a Circle Sector

 

Radius of Gyration of a Circle Sector formulas

\( k_{x} \;=\;   \dfrac{1}{4} \cdot    \sqrt{  2 \cdot r^2 \cdot    \dfrac{ 2\cdot \Delta - sin(2 \cdot \Delta ) }{ \Delta }  }  \) 

\( k_{y} \;=\; \dfrac{1}{12} \cdot     \sqrt{  2 \cdot r^2 \cdot    \dfrac{ 180^2 + 9\cdot \Delta \cdot sin(2\cdot \Delta) - 32 + 32 \cdot cos^2(\Delta)  }{ \Delta^2 }    }   \) 

\( k_{z} \;=\; \dfrac{1}{6}  \cdot    \sqrt{ 2 \cdot r^2  \cdot    \dfrac{ 9 \cdot \Delta^2 - 8 \cdot sin^2(2\cdot \Delta ) }{ \Delta^2 } }  \)

\( k_{x1} \;=\; \dfrac{1}{4}  \cdot    \sqrt{ 2 \cdot r^2 \cdot    \dfrac{ 2\cdot \Delta - sin(2 \cdot \Delta) }{ \Delta }   }   \)

\( k_{y1} \;=\; \dfrac{1}{4}  \cdot     \sqrt{ 2 \cdot r^2 \cdot    \dfrac{ 2\cdot \Delta + sin(2 \cdot \Delta ) }{ \Delta }  }  \)

\( k_{x1} \;=\;  \dfrac{  r }{ \sqrt{2}  } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( \Delta \) = angle \( deg \) \(rad \)
\( r \) = radius \( in \) \( mm \)

circle sector 11circle 17

 

 

 

 

 

 Piping Designer Logo 1