Skip to main content

Radius of Gyration of a Hollow Circle

 

Radius of Gyration of a Hollow Circle formulas

\( k_{x} \;=\;    \frac{1}{2}  \cdot  \sqrt {  R^2  + r^2   }   \) 

\( k_{y} \;=\;   \frac{1}{2} \cdot  \sqrt {  R^2  + r^2   }   \) 

\( k_{z} \;=\;   \dfrac{ \sqrt{ 2 } }{ 2 } \cdot  \sqrt{  R^2  + r^2  }  \) 

\( k_{x1} \;=\; \frac{1}{2} \cdot  \sqrt{  5 \cdot R^2  + r^2 }  \)

\( k_{y1} \;=\; \frac{1}{2} \cdot  \sqrt{  5 \cdot R^2  + r^2 }  \)

\( k_{z1} \;=\;  \dfrac{ \sqrt{ 2 } }{ 2 }  \cdot  \sqrt{  5 \cdot R^2  + r^2 }  \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( r \) = inside radius \( in \) \( mm \)
\( R \) = outside radius \( in \) \( mm \)

circle hollow 4circle 17

 

 

 

 

 

 Piping Designer Logo 1