Skip to main content

Radius of Gyration of a Quarter Circle

 

Radius of Gyration of a Quarter Circle formulas

\( k_{x} \;=\;   r  \cdot \sqrt{  \dfrac{ 1 }{ 4 }  -  \dfrac{ 16 }{ 9 \cdot  \pi^2}  }  \) 

\( k_{y} \;=\;   r  \cdot \sqrt{  \dfrac{ 1 }{ 4 }  -  \dfrac{ 16 }{ 9 \cdot  \pi^2}  } \)

\( k_{z} \;=\;   r  \cdot \sqrt{  \dfrac{ 1 }{ 2 }  -  \dfrac{ 16 }{ 9 \cdot  \pi^2}  } \)

\( k_{x1} \;=\;  \dfrac{ r  }{ 2 } \)

\( k_{y1} \;=\;  \dfrac{ r  }{ 2 } \)

\( k_{z1} \;=\; \dfrac{ \sqrt {2} }{ 2 } \cdot r  \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)
\( r \) = radius \( in \) \( mm \)

2 overlapping circles 1circle 17

 

 

 

 

 

Piping Designer Logo 1