Radius of Gyration of a Trapezoid
| Radius of Gyration of a Trapezoid formulas | ||
| \( k_{x} \;=\; \dfrac {h}{6} \cdot \sqrt{ 2 + \dfrac{ 4\cdot c\cdot a}{ \left( c + a \right)^2 } } \) \( k_{y} \;=\; \sqrt { \dfrac {I_y}{A_{area}} } \) \( k_{z} \;=\; \sqrt { k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \dfrac{1}{6} \cdot \sqrt{ \dfrac{ 6\cdot h^2 \cdot \left( 3\cdot c + a \right) }{c + a} } \) \( k_{y1} \;=\; \sqrt { \dfrac {I_{y1}} {A_{area}} } \) \( k_{z1} \;=\; \sqrt { k_{x1}{^2} + k_{y1}{^2} } \) | ||
| Symbol | English | Metric | 
| \( k \) = radius of gyration | \( in \) | \( mm \) | 
| \( a, b, c, d \) = edge | \( in \) | \( mm \) | 
| \( h \) = height | \( in \) | \( mm \) | 


