Buoyant Unit Weight
Buoyant unit weight, abbreviated as \( \gamma ' \), also called effective unit weight or submerged unit weight, is the unit weight of a submerged object minus saturated weight of the object.
Buoyant Unit Weight formulas
\(\large{ \gamma ' = \gamma_{sat} - \gamma_w }\) | |
\(\large{ \gamma ' = m \; \left( 1 - \frac{ \rho_o }{ \rho_f } \right) }\) | |
\(\large{ \gamma ' = \frac{ G_s \; \gamma_w \;-\; \gamma_w }{ 1 \;+\; e } }\) | |
\(\large{ \gamma ' = \frac{ \left( G_s \;-\; 1 \right) \; \gamma_w }{ 1 \;+\; e } }\) | |
\(\large{ \gamma ' = \frac{ \left( G_s \;+\; e \right) \; \gamma_w }{ 1 \;+\; e } \;-\; \gamma_w }\) | |
\(\large{ \gamma ' = \frac{ \left( G_s \;+\; e \right) \; \gamma_w \;-\; \left( 1 \;+\; e \right) \; \gamma_w }{ 1 \;+\; e } }\) | |
\(\large{ \gamma ' = \frac{ G_s \; \gamma_w \;+\; e \; \gamma_w \;-\; \gamma_w \;-\; e \; \gamma_w }{ 1 \;+\; e } }\) |
Where:
\(\large{ \gamma ' } \) (Greek symbol gamma) = buoyant unit weight
\(\large{ \gamma_{sat} } \) (Greek symbol gamma) = saturated unit weight
\(\large{ \gamma_w } \) (Greek symbol gamma) = unit weight of water
\(\large{ \rho_f } \) (Greek symbol rho) = density of fluid
\(\large{ \rho_o } \) (Greek symbol rho) = density of object
\(\large{ m } \) = mass of object
\(\large{ G_s }\) = specific gravity of soil
\(\large{ e }\) = void ratio