# Square Channel

on . Posted in Plane Geometry

A square channel, also called square C-channel or square U-channel, is a type of structural steel member with a cross-sectional shape resembling the letter "C" or "U."  In the case of a square channel, the cross-sectional shape is square rather than the more common rectangular shape of a standard C-channel or U-channel.  It has four equal length sides forming a square, and one side of the square is open.

Square channels are often used in construction and engineering applications where a combination of torsional resistance, load-bearing capacity, and ease of connection is required.  The open side of the square channel provides a convenient space for attaching other structural components, fasteners, or fixtures.

## area of a Square Channel formula

$$\large{ A = w\;l - h \; \left( w - t \right) }$$
Symbol English Metric
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Distance from Centroid of a Square Channel formulas

$$\large{ C_x = \frac{ 2\;w^2 \;s \;+\; h\;t^2 }{ 2\;w\;l \;-\; 2\;h \; \left( w \;-\; t \right) } }$$

$$\large{ C_y = \frac{ l }{ 2} }$$

Symbol English Metric
$$\large{ C }$$ = distance from centroid $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Elastic Section Modulus of a Square Channel formulas

$$\large{ S_{x} = \frac{ I_{x} }{ C_{y} } }$$

$$\large{ S_{y} = \frac{ I_{y} }{ C_{x} } }$$

Symbol English Metric
$$\large{ S }$$ = elastic section modulus $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ C }$$ = distance from centroid $$\large{ in }$$ $$\large{ mm }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$

## Perimeter of a Square Channel formula

$$\large{ P = 2 \; \left( 2\;w + l \; \right) - 2\;t }$$
Symbol English Metric
$$\large{ P }$$ = perimeter $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Polar Moment of Inertia of a Square Channel formulas

$$\large{ J_{z} = I_{x} + I_{y} }$$

$$\large{ J_{z1} = I_{x1} + I_{y1} }$$

Symbol English Metric
$$\large{ J }$$ = torsional constant $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$

## Radius of Gyration of a Square Channel formulas

$$\large{ k_{x} = \sqrt { \frac{ w\;l^3 \;-\; h^3 \; \left( w \;-\; t \right) }{ 12 \; \left[ w\;l \;-\; h \; \left( w \;-\; t \right) \right] } } }$$

$$\large{ k_{y} = \sqrt { \frac{ I_{y} }{ A } } }$$

$$\large{ k_{z} = \sqrt { k_{x}{^2} + k_{y}{^2} } }$$

$$\large{ k_{x1} = \sqrt { \frac{ I_{x1} }{ A } } }$$

$$\large{ k_{y1} = \sqrt { \frac{ I_{y1} }{ A } } }$$

$$\large{ k_{z1} = \sqrt { k_{x1}{^2} + k_{y1}{^2} } }$$

Symbol English Metric
$$\large{ k }$$ = radius of gyration $$\large{ in }$$ $$\large{ mm }$$
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Second Moment of Area of a Square Channel formulas

$$\large{ I_{x} = \frac{ w\;l^3 \;-\; h^3 \; \left( w \;-\; t \right) }{ 12 } }$$

$$\large{ I_{y} = \frac{ 2\;s\;w^3 \;+\; h\;t^3 }{ 3 } - A\;C_{x}{^2} }$$

$$\large{ I_{x1} = I_{x} + A\;C_{y}{^2} }$$

$$\large{ I_{y1} = I_{y} + A\;C_{x}{^2} }$$

Symbol English Metric
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ C }$$ = distance from centroid $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Torsional Constant of a Square Channel formula

$$\large{ J = \frac{ 2 \; \left( w \;-\; \frac{t}{2} \right) \; s^3 \; \left( l \;-\; s \right) \; t^3 }{ 3 } }$$
Symbol English Metric
$$\large{ J }$$ = torsional constant $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

Tags: Structural Steel