Square Channel
A square channel, also called square C-channel or square U-channel, is a type of structural steel member with a cross-sectional shape resembling the letter "C" or "U." In the case of a square channel, the cross-sectional shape is square rather than the more common rectangular shape of a standard C-channel or U-channel. It has four equal length sides forming a square, and one side of the square is open.
Square channels are often used in construction and engineering applications where a combination of torsional resistance, load-bearing capacity, and ease of connection is required. The open side of the square channel provides a convenient space for attaching other structural components, fasteners, or fixtures.
- See Article - Geometric Properties of Structural Shapes
area of a Square Channel formula |
||
\( A \;=\; w\cdot l - h \cdot \left( w - t \right) \) | ||
Symbol | English | Metric |
\( A \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\( h \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |
Distance from Centroid of a Square Channel formulas |
||
\( C_x \;=\; \dfrac{ 2\cdot w^2 \cdot s + h\cdot t^2 }{ 2\cdot w\cdot l - 2\cdot h \cdot \left( w - t \right) } \) \( C_y \;=\; \dfrac{ l }{ 2} \) |
||
Symbol | English | Metric |
\( C \) = distance from centroid | \(\large{ in }\) | \(\large{ mm }\) |
\( h \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( s \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |
Elastic Section Modulus of a Square Channel formulas |
||
\( S_{x} \;=\; \dfrac{ I_{x} }{ C_{y} } \) \( S_{y} \;=\; \dfrac{ I_{y} }{ C_{x} } \) |
||
Symbol | English | Metric |
\( S \) = elastic section modulus | \(\large{ in^3 }\) | \(\large{ mm^3 }\) |
\( C \) = distance from centroid | \(\large{ in }\) | \(\large{ mm }\) |
\( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
Perimeter of a Square Channel formula |
||
\( P \;=\; 2 \cdot \left( 2\cdot w + l \right) - 2\cdot t \) | ||
Symbol | English | Metric |
\( P \) = perimeter | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( s \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |
Polar Moment of Inertia of a Square Channel formulas |
||
\( J_{z} \;=\; I_{x} + I_{y} \) \( J_{z1} \;=\; I_{x1} + I_{y1} \) |
||
Symbol | English | Metric |
\( J \) = torsional constant | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
Radius of Gyration of a Square Channel formulas |
||
\( k_{x} \;=\; \sqrt{ \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t \right) }{ 12 \cdot \left[ w\cdot l - h \cdot \left( w - t \right) \right] } } \) \( k_{y} \;=\; \sqrt{ \dfrac{ I_{y} }{ A } } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac{ I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \(\large{ in }\) | \(\large{ mm }\) |
\( A \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\( h \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |
Second Moment of Area of a Square Channel formulas |
||
\( I_{x} \;=\; \dfrac{ w\cdot l^3 - h^3 \cdot \left( w - t \right) }{ 12 } \) \( I_{y} \;=\; \dfrac{ 2\cdot s\cdot w^3 + h\cdot t^3 }{ 3 } - A\cdot C_{x}{^2} \) \( I_{x1} \;=\; I_{x} + A\cdot C_{y}{^2} \) \( I_{y1} \;=\; I_{y} + A\cdot C_{x}{^2} \) |
||
Symbol | English | Metric |
\( I \) = moment of inertia | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\( A \) = area | \(\large{ in^2 }\) | \(\large{ mm^2 }\) |
\( C \) = distance from centroid | \(\large{ in }\) | \(\large{ mm }\) |
\( h \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( s \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |
Torsional Constant of a Square Channel formula |
||
\( J \;=\; \dfrac{ 2 \cdot \left( w - \dfrac{t}{2} \right) \cdot s^3 \cdot \left( l - s \right) \cdot t^3 }{ 3 } \) | ||
Symbol | English | Metric |
\( J \) = torsional constant | \(\large{ in^4 }\) | \(\large{ mm^4 }\) |
\( l \) = height | \(\large{ in }\) | \(\large{ mm }\) |
\( s \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( t \) = thickness | \(\large{ in }\) | \(\large{ mm }\) |
\( w \) = width | \(\large{ in }\) | \(\large{ mm }\) |