Skip to main content

L beam square 1Square angle is an angle iron with square legs, creating a right angle.  This type of angle iron has equal length sides forming a 90-degree corner.  It's commonly used as a structural component in various construction and engineering applications due to its rigidity and load-bearing capacity.  Square angles, like other angle iron profiles, come in various sizes, thicknesses, and materials to accommodate different load-bearing capacities and design requirements.  The cross-sectional properties of the angle, such as the moment of inertia and section modulus, determine its performance under different loading conditions.

 

area of a Square Channel formula

\( A \;=\;   t \cdot \left( 2\cdot w - t  \right)  \)
Symbol English Metric
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Distance from Centroid of a Square Angle formulas

\( C_x \;=\;  \dfrac{ w^2  +  w\cdot t  - t^2  }{ 2 \cdot \left( 2\cdot w - t  \right)  }  \)

\( C_y \;=\;  \dfrac{ w^2  +  w\cdot t  - t^2  }{ 2 \cdot \left( 2\cdot w - t  \right)  }  \)

Symbol English Metric
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Elastic Section Modulus of a Square Angle formulas

\( S_x \;=\;  \dfrac{ I_x }{ C_y   } \) 

\( S_y \;=\;  \dfrac{ I_y }{ C_x   } \) 

Symbol English Metric
\( S \) = elastic section modulus \(\large{ in^3 }\) \(\large{ mm^3 }\)
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Perimeter of a Square Angle formula

\( P \;=\;  4\cdot w \)
Symbol English Metric
\( P \) = perimeter \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Polar Moment of Inertia of a Square Angle formulas

\( J_{z} \;=\;  I_{x}  +  I_{y} \)

\( J_{z1} \;=\;  I_{x1}  +  I_{y1} \)

Symbol English Metric
\( J \) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Principal Axis of a Square Angle formula

\( d \;=\;  \dfrac{ w^2  +  w\cdot t  - t^2  }{ 2 \cdot \left( 2\cdot w - t  \right) \cdot cos( 45^\circ)   }  \)
Symbol English Metric
\( d \) = distance from principle axis \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Radius of Gyration of a Square Angle formulas

\( k_{x} \;=\;  \sqrt{  \dfrac { I_{x} }{ A  }   }   \) 

\( k_{y} \;=\;  \sqrt{  \dfrac { I_{y} }{ A  }   }   \) 

\( k_{z} \;=\;    \sqrt{  k_{x}{^2}  +  k_{y}{^2}  } \) 

\( k_{x1} \;=\;  \sqrt{  \dfrac { I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;  \sqrt{  \dfrac { I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2}  +  k_{y1}{^2}  } \)

Symbol English Metric
\( k \) = radius of gyration \(\large{ in }\) \(\large{ mm }\)
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)

 

Second Moment of Area of a Square Angle formulas

\( I_{x} \;=\;   \dfrac{  t \cdot \left( w - C_y  \right)^3  +   w \cdot \left[  w - \left( w - C_y \right)  \right]^3   -  \left( w - t \right)  \cdot   \left[  w - \left( w - C_y \right) - t  \right]^3  }{3}   \) 

\( I_{x} \;=\;   \dfrac{  t \cdot \left( w - C_y  \right)^3  +  w \cdot \left[  w - \left( w - C_y \right)  \right]^3   -  \left( w - t \right)   \cdot  \left[  w - \left( w - C_y \right) - t  \right]^3   }{3}   \) 

\( I_{x1} \;=\;  I_{x}  +  A\cdot C_{y} \) 

\( I_{y1} \;=\;  I_{y}  +  A\cdot C_{x} \)

Symbol English Metric
\( I \) = moment of inertia \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( A \) = area \(\large{ in^2 }\) \(\large{ mm^2 }\)
\( C \) = distance from centroid \(\large{ in }\) \(\large{ mm }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Tortional Constant of a Square Angle formula

\( J  \;=\;   \dfrac{   \left[  w - \left(  \dfrac {t}{2}  \right)  \right]   +  \left[  w - \left(  \dfrac {t}{2}  \right)  \right] \cdot t^3    }{3}  \) 
Symbol English Metric
\( J \) = torsional constant \(\large{ in^4 }\) \(\large{ mm^4 }\)
\( t \) = thickness \(\large{ in }\) \(\large{ mm }\)
\( w \) = width \(\large{ in }\) \(\large{ mm }\)

 

Piping Designer Logo 1