Zed
Zed beam, also called known as a "Z-shaped" or "Z-section" beam, is a variation of the letter "Z," which reflects the shape of the cross-sectional profile of the beam. A Zed beam, or Z-section beam, has a cross-sectional shape resembling the letter "Z," with flanges (horizontal top and bottom parts) that are parallel and connected by a vertical web. The flanges are usually smaller in width than those of an I-beam, and they extend outward from the web at the top and bottom. The web connects the two flanges and provides vertical rigidity to the beam.
- See Article - Geometric Properties of Structural Shapes
area of a Zed formula |
||
\( A \;=\; t \cdot \left[ l + 2 \cdot \left( w - t \right) \right] \) | ||
Symbol | English | Metric |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( l \) = height | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |
Distance from Centroid of a Zed formulas |
||
\( C_x \;=\; \dfrac{ 2\cdot w - t }{ 2 } \) \( C_y \;=\; \dfrac{ l }{ 2 } \) |
||
Symbol | English | Metric |
\( C \) = distance from centroid | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |
Elastic Section Modulus of a Zed formulas |
||
\( S_{x} \;=\; \dfrac{ I_{x} }{ C_{y} } \) \( S_{y} \;=\; \dfrac{ I_{y} }{ C_{x} } \) |
||
Symbol | English | Metric |
\( S \) = elastic section modulus | \( in^3 \) | \( mm^3 \) |
\( C \) = distance from centroid | \( in \) | \( mm \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
Perimeter of a Zed formula |
||
\( P \;=\; 2 \cdot \left( w + l \right) - t \) | ||
Symbol | English | Metric |
\( P \) = perimeter | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |
Polar Moment of Inertia of a Zed formulas |
||
\( J_{z} \;=\; I_{x} + I_{y} \) \( J_{z1} \;=\; I_{x1} + I_{y1} \) |
||
Symbol | English | Metric |
\( J \) = torsional constant | \( in^4 \) | \( mm^4 \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
Radius of Gyration of a Zed formulas |
||
\( k_{x} \;=\; \sqrt{ \dfrac{ w\cdot l^3 - c \cdot \left( l - 2\cdot t \right)^3 }{ 12\cdot t \cdot \left[ l + 2 \cdot \left( w - t \right) \right] } } \) \( k_{y} \;=\; \dfrac{l \cdot \left( w + c \right)^3 - 2c^3 \cdot h - 6\cdot w^2\cdot c\cdot h }{ 12\cdot t \cdot \left[ l + 2 \cdot \left( w - t \right) \right] } \) \( k_{z} \;=\; \sqrt{ k_{x}{^2} + k_{y}{^2} } \) \( k_{x1} \;=\; \sqrt{ \dfrac{ I_{x1} }{ A } } \) \( k_{y1} \;=\; \sqrt{ \dfrac{ I_{y1} }{ A } } \) \( k_{z1} \;=\; \sqrt{ k_{x1}{^2} + k_{y1}{^2} } \) |
||
Symbol | English | Metric |
\( k \) = radius of gyration | \( in \) | \( mm \) |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( h \) = height | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( c \) = width | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |
Second Moment of Area of a Zed formulas |
||
\( I_{x} \;=\; \dfrac{ w\cdot l^3 - c \cdot \left( l - 2\cdot t \right)^3 }{12} \) \( I_{y} \;=\; \dfrac{ l \cdot \left( w + c \right)^3 - 2\cdot c^3\cdot h - 6\cdot w^2 \cdot c\cdot h }{12} \) \( I_{x1} \;= \; I_{x} + A\cdot C_{y}{^2} \) \( I_{y1} \;=\; I_{y} + A\cdot C_{x}{^2} \) |
||
Symbol | English | Metric |
\( I \) = moment of inertia | \( in^4 \) | \( mm^4 \) |
\( A \) = area | \( in^2 \) | \( mm^2 \) |
\( C \) = distance from centroid | \( in \) | \( mm \) |
\( h \) = height | \( in \) | \( mm \) |
\( l \) = height | \( in \) | \( mm \) |
\( t \) = thickness | \( in \) | \( mm \) |
\( c \) = width | \( in \) | \( mm \) |
\( w \) = width | \( in \) | \( mm \) |