Plate Uniformly Distributed Load - Supported on Three Edges, One Long Edge Fixed UDL
Plate Uniformly Distributed Load - Supported on Three edges, One Long Edge Fixed UDL Formula
\(\large{ M_{A1} = \beta_a \; w\; a\; b }\)
\(\large{ M_{A2} = \alpha_a \; w\; a\; b }\)
\(\large{ M_B = \alpha_b \; w\; a\; b }\)
\(\large{ M_a^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_a \;+\; \left(\mu\;-\;\mu_r \right) \;M_b}{ 1\;-\; \mu_r} }\)
\(\large{ M_b^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_b \;+\; \left(\mu\;-\;\mu_r \right) \;M_a}{ 1\;-\; \mu_r} }\)
Where:
\(\large{ \alpha_a, \alpha_b }\) (Greek aymbol alpha) = length to width ratio coefficient
\(\large{ \beta_a }\) (Greek aymbol beta) = length to width ratio coefficient
\(\large{ \omega }\) (Greek symbol omega) = load per unit area
\(\large{ b }\) = longest span length
\(\large{ M }\) = maximum bending moment
\(\large{ \mu }\) (Greek symbol mu) = Poisson's ratio of plate material
\(\large{ a }\) = shortest span length
\(\frac{b}{a}\) | \(\alpha_a\) | \(\alpha_b\) | \(\beta_a\) |
---|---|---|---|
1.0 | 0.0334 | 0.0273 | -0.0892 |
1.1 | 0.0349 | 0.0231 | -0.0892 |
1.2 | 0.0357 | 0.0196 | -0.0872 |
1.3 | 0.0359 | 0.0165 | -0.0843 |
1.4 | 0.0357 | 0.0140 | -0.0808 |
1.5 | 0.0350 | 0.0119 | -0.0772 |
1.6 | 0.0341 | 0.0101 | -0.0735 |
1.7 | 0.0333 | 0.0086 | -0.0701 |
1.8 | 0.0326 | 0.0075 | -0.0668 |
1.9 | 0.3316 | 0.0064 | -0.0638 |
2.0 | 0.0303 | 0.0056 | -0.0610 |
Tags: Plate Support