Plate Uniformly Distributed Load - Supported on Three Edges, One Short Edge Fixed UDL
Plate Uniformly Distributed Load - Supported on Three edges, One Short Edge Fixed UDL Formula
\(\large{ M_A = \alpha_a \; w\; a\; b }\)
\(\large{ M_{B1} = \beta_b \; w\; a\; b }\)
\(\large{ M_{B2} = \alpha_b \; w\; a\; b }\)
\(\large{ M_a^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_a \;+\; \left(\mu\;-\;\mu_r \right) \;M_b}{ 1\;-\; \mu_r} }\)
\(\large{ M_b^\mu = \frac{ \left(1\;-\;\mu\;\mu_r \right) \;M_b \;+\; \left(\mu\;-\;\mu_r \right) \;M_a}{ 1\;-\; \mu_r} }\)
Where:
\(\large{ \alpha_a, \alpha_b }\) (Greek aymbol alpha) = length to width ratio coefficient
\(\large{ \beta_a }\) (Greek aymbol beta) = length to width ratio coefficient
\(\large{ \omega }\) (Greek symbol omega) = load per unit area
\(\large{ b }\) = longest span length
\(\large{ M }\) = maximum bending moment
\(\large{ \mu }\) (Greek symbol mu) = Poisson's ratio of plate material
\(\large{ a }\) = shortest span length
\(\frac{b}{a}\) | \(\alpha_a\) | \(\alpha_b\) | \(\beta_a\) |
---|---|---|---|
1.0 | 0.0273 | 0.0334 | -0.0892 |
1.1 | 0.0313 | 0.0313 | -0.0867 |
1.2 | 0.0348 | 0.0292 | -0.0820 |
1.3 | 0.0378 | 0.0269 | -0.0760 |
1.4 | 0.0401 | 0.0248 | -0.0688 |
1.5 | 0.0420 | 0.0228 | -0.0620 |
1.6 | 0.0433 | 0.0208 | -0.0553 |
1.7 | 0.0441 | 0.0190 | -0.0489 |
1.8 | 0.0444 | 0.0172 | -0.0432 |
1.9 | 0.0445 | 0.0157 | -0.0332 |
2.0 | 0.0443 | 0.0142 | -0.0338 |
Tags: Plate Support