Skip to main content

Temperature Coefficient of Resistance

 

Temperature Coefficient of Resistance Formula

\( R  \;=\;  R_{ref}  \cdot  [\; 1+ \alpha \cdot (  T - T_{ref} ) \; ]  \) 
Symbol English Metric
\( R \) = Resistance at Temperature \(T\) \(\Omega\)  \(\Omega\) 
\( R_{ref}  \) = Resistance at Reference Temperature \(\Omega\)  \(\Omega\) 
\( \alpha \)  (Greek symbol alpha) = Temperature Coefficient of Resistance of the Material \(^{\circ} F\) \(^{\circ} C\)
\(T  \) = Material Temperature in Celcius \(^{\circ} F\) \(^{\circ} C\)
\( T_{ref} \) = Reference Temperature for which the Temperature Coefficient is Specified \(^{\circ} F\) \(^{\circ} C\)

Temperature coefficient of resistance, abbreviated as \(TCR\), is a material-specific parameter that describes the relative change in the electrical resistance of a conductor, semiconductor, or resistor per unit change in temperature.  It quantifies how sensitive a material’s resistance is to temperature variations, with positive values (common in metals like copper and tungsten) indicating that resistance increases with rising temperature due to enhanced lattice vibrations that scatter electrons, while negative values (typical in semiconductors and carbon-based materials) mean resistance decreases as temperature rises because thermal energy excites more charge carriers. 

Piping Designer Logo 1

 

 

 

 

 

  

Temperature Coefficient of Resistance Material

Material / Substance Temperature coefficient of resistance / °C (at 20 °C)
Aluminum 0.00429
Brass 0.0015
Carbon -0.0005
Constantan 0.00003
Copper 0.00386
Germanium -0.05
Gold 0.0034
Iron 0.00651
Manganese 0.00001
Manganin 0.000002
Mercury 0.0009
Nichrome 0.0004
Nickel 0.00641
Platinum 0.003927
Silicon -0.07
Silver 0.0038
Tantalum 0.0033
Tin 0.0042
Tungsten 0.0045
Zinc 0.0037