Standard Deviation
Standard deviation, abbreviated as \(\sigma\) (Greek symbol sigma), measures how spread out the data is.
Standard Deviation formulas
\(\large{ \sigma = \sqrt{ \frac{ \sum \; \left( X_s \;-\; m \right)^2 }{ n } } }\) | |
\(\large{ \sigma = \sqrt{ \frac{ 1 }{ n } \; \sum_{s=1}^n \; \left( X_s \;-\; m \right)^2 } }\) |
Where:
\(\large{ \sigma }\) = standard deviation
\(\large{ \sum \;X_s }\) (Greek symbol Sigma) = sum of data values \(\large{ X_1, X_2, X_3, ... }\)
\(\large{ m }\) = mean value
\(\large{ n }\) = number of data values