# 4 Connecting Circles

Written by Jerry Ratzlaff on . Posted in Plane Geometry

• 4 connecting circles (a two-dimensional figure) has four equal length arcs connecting at the vertices bound by circles.
• a = b = c = d
• 4 arcs
• 4 vertexs

## Arc Length of a Circle Arc Square formula

 $$\large{ n = \frac{2\; \pi \;r}{4} }$$

### Where:

 Units English SI $$\large{ n }$$ = arc length $$\large{feet}$$ $$\large{m}$$ $$\large{ \pi }$$ = Pi $$\large{dimensionless}$$ $$\large{ r }$$ = radius $$\large{feet}$$ $$\large{m}$$

## Area of a Circle Arc Square formula

 $$\large{ A_{area} = \left( 4 - \pi \right) \; r^2 }$$

### Where:

 Units English SI $$\large{ A }$$ = area $$\large{feet^2}$$ $$\large{m^2}$$ $$\large{ \pi }$$ = Pi $$\large{dimensionless}$$ $$\large{ r }$$ = radius $$\large{feet}$$ $$\large{m}$$

## Diagonal of a Circle Arc Square formula

 $$\large{ d' = \left( 2\; \sqrt{2} - 2 \right) \; r }$$

### Where:

 Units English SI $$\large{ r }$$ = radius $$\large{feet}$$ $$\large{m}$$ $$\large{ \pi }$$ = Pi $$\large{dimensionless}$$ $$\large{ d^' }$$ = diagonal $$\large{feet}$$ $$\large{m}$$

## Perimeter of a Circle Arc Square formula

 $$\large{ p = 2\; \pi \;r }$$

### Where:

 Units English SI $$\large{ p }$$ = perimeter $$\large{feet}$$ $$\large{m}$$ $$\large{ \pi }$$ = Pi $$\large{dimensionless}$$ $$\large{ r }$$ = radius $$\large{feet}$$ $$\large{m}$$