4 Connecting Circles

Written by Jerry Ratzlaff on . Posted in Plane Geometry

  • circle arc square 14 connecting circles (a two-dimensional figure) has four equal length arcs connecting at the vertices bound by circles.
  • a = b = c = d
  • 4 arcs
  • 4 vertexs

 

Arc Length of a Circle Arc Square formula

\(\large{ n =  \frac{2\; \pi \;r}{4}   }\)   

Where:

Units  English SI
\(\large{ n }\) = arc length \(\large{feet}\) \(\large{m}\) 
\(\large{ \pi }\) = Pi  \(\large{dimensionless}\)
\(\large{ r }\) = radius \(\large{feet}\) \(\large{m}\)

 

Area of a Circle Arc Square formula

\(\large{ A_{area} =  \left( 4 - \pi \right) \; r^2  }\)   

Where:

Units  English SI
\(\large{ A }\) = area \(\large{feet^2}\) \(\large{m^2}\) 
\(\large{ \pi }\) = Pi  \(\large{dimensionless}\)
\(\large{ r }\) = radius \(\large{feet}\) \(\large{m}\)

 

Diagonal of a Circle Arc Square formula

\(\large{ d' = \left( 2\; \sqrt{2} - 2 \right) \; r  }\)   

Where:

Units  English SI
\(\large{ r }\) = radius \(\large{feet}\) \(\large{m}\) 
\(\large{ \pi }\) = Pi  \(\large{dimensionless}\)
\(\large{ d^' }\) = diagonal \(\large{feet}\) \(\large{m}\)

 

Perimeter of a Circle Arc Square formula

\(\large{ p = 2\; \pi \;r  }\)   

Where:

Units  English SI
\(\large{ p }\) = perimeter \(\large{feet}\) \(\large{m}\) 
\(\large{ \pi }\) = Pi  \(\large{dimensionless}\)
\(\large{ r }\) = radius \(\large{feet}\) \(\large{m}\)

 

 

Tags: Equations for Area Equations for Perimeter Equations for Diagonal Equations for Arc Length