Second Moment of Area of a Circle formulas |
||
\( I_{x} \;=\; \dfrac{ \pi \cdot r^4}{ 4 }\) \( I_{y} \;=\; \dfrac{ \pi \cdot r^4}{ 4 }\) \( I_{x1} \;=\; \dfrac{ 5 \cdot \pi \cdot r^4}{ 4 }\) \( I_{y1} \;=\; \dfrac{ 5 \cdot \pi \cdot r^4}{ 4 }\) |
||
Symbol | English | Metric |
\( I \) = Moment of Inertia | \( in^4 \) | \( mm^4 \) |
\( \pi \) = Pi | \(3.141 592 653 ...\) | \(3.141 592 653 ...\) |
\( r \) = Radius | \( in \) | \(mm \) |
Second moment of area of a circle, also called area moment of inertia, represents its resistance to bending or deflection about a given axis. It's a geometric property that depends on the distribution of the area of the circle relative to that axis. For a circle, this value is calculated about a specific axis (usually the centroidal axis).