# Right Hollow Cylinder

on . Posted in Solid Geometry

• Right hollow cylinder (a three-dimensional figure) has a hollow core with both bases direictly above each other and having the center at 90° to each others base.
• 2 bases

See article links Moment of Inertia and Moment of Inertia of a Cylinder ## Inside Volume of a Right Hollow cylinder formula

$$\large{ V = \pi\; r^2\;h }$$
Symbol English Metric
$$\large{ V }$$ = volume (inside) $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ \pi }$$ = Pi  $$\large{3.141 592 653 ...}$$
$$\large{ r }$$ = inside radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$ ## Lateral Surface Area of a Right Hollow cylinder formula

$$\large{ A_l = 2 \; \pi \; h \left(R^2 + r^2 \right) }$$
Symbol English Metric
$$\large{ A_l }$$ = lateral surface area (side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ \pi }$$ = Pi  $$\large{3.141 592 653 ...}$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ R }$$ = outside radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = inside radius $$\large{ in }$$ $$\large{ mm }$$ ## Object Volume of a Right Hollow cylinder formula

$$\large{ V = \pi\; h \left(R^2 - r^2 \right) }$$
Symbol English Metric
$$\large{ V }$$ = volume (object thickness) $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ R }$$ = outside radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = inside radius $$\large{ in }$$ $$\large{ mm }$$ ## Surface Area of a Right Hollow cylinder formula

$$\large{ A_s = h + 2 \; \pi \left(R^2 - r^2 \right) }$$
Symbol English Metric
$$\large{ A_s }$$ = surface area (bottom, top, side) $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ \pi }$$ = Pi  $$\large{3.141 592 653 ...}$$
$$\large{ R }$$ = outside radius $$\large{ in }$$ $$\large{ mm }$$
$$\large{ r }$$ = inside radius $$\large{ in }$$ $$\large{ mm }$$ 