# Right Hollow Cylinder

on . Posted in Solid Geometry

• Right hollow cylinder (a three-dimensional figure) has a hollow core with both bases direictly above each other and having the center at 90° to each others base.
• 2 bases

### Inside Volume of a Right Hollow cylinder formula

$$V = \pi\; r^2\;h$$
Symbol English Metric
$$V$$ = volume (inside) $$in^3$$ $$mm^3$$
$$\pi$$ = Pi  $$3.141 592 653 ...$$
$$r$$ = inside radius $$in$$ $$mm$$
$$h$$ = height $$in$$ $$mm$$

### Lateral Surface Area of a Right Hollow cylinder formula

$$A_l = 2 \; \pi \; h \;(R^2 + r^2 )$$
Symbol English Metric
$$A_l$$ = lateral surface area (side) $$in^2$$ $$mm^2$$
$$\pi$$ = Pi  $$3.141 592 653 ...$$
$$h$$ = height $$in$$ $$mm$$
$$R$$ = outside radius $$in$$ $$mm$$
$$r$$ = inside radius $$in$$ $$mm$$

### Object Volume of a Right Hollow cylinder formula

$$V = \pi\; h \;(R^2 - r^2 )$$
Symbol English Metric
$$V$$ = volume (object thickness) $$in^3$$ $$mm^3$$
$$h$$ = height $$in$$ $$mm$$
$$R$$ = outside radius $$in$$ $$mm$$
$$r$$ = inside radius $$in$$ $$mm$$

### Surface Area of a Right Hollow cylinder formula

$$A_s = h + 2 \; \pi \;(R^2 - r^2 )$$
Symbol English Metric
$$A_s$$ = surface area (bottom, top, side) $$in^2$$ $$mm^2$$
$$h$$ = height $$in$$ $$mm$$
$$\pi$$ = Pi  $$3.141 592 653 ...$$
$$R$$ = outside radius $$in$$ $$mm$$
$$r$$ = inside radius $$in$$ $$mm$$

Tags: Cylinder