Oblique Cylinder

on . Posted in Solid Geometry

  • Oblique cylinder (a three-dimensional figure) has both bases not alligned above each other and the center not at 90° to the other base center.
  • 2 bases

 

oblique cylinder 1

Height of a Oblique Cylinder formula

\(\large{ h = l \; sin\;x  }\) 
Symbol English Metric
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ x }\) = angle \(\large{ deg }\) \(\large{ rad }\)
\(\large{ l }\) = length \(\large{ in }\) \(\large{ mm }\)

 

 

oblique cylinder 1

Lateral surface area of a Oblique Cylinder formula

\(\large{ A_l = 2\; \pi \; r \; l  }\) 
Symbol English Metric
\(\large{ A_l }\) = lateral surface area (side) \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ l }\) = length \(\large{ in }\) \(\large{ mm }\)
\(\large{ \pi }\) = Pi  \(\large{3.141 592 653 ...}\)
\(\large{ r }\) = radius \(\large{ in }\) \(\large{ mm }\)

 

oblique cylinder 1

Surface area of a Oblique Cylinder formula

\(\large{ A_s =  l + 2 \; \pi \;r^2  }\) 
Symbol English Metric
\(\large{ A_s }\) = surface area (bottom, top, side) \(\large{ in^2 }\) \(\large{ mm^2 }\)
\(\large{ l }\) = length \(\large{ in }\) \(\large{ mm }\)
\(\large{ \pi }\) = Pi  \(\large{3.141 592 653 ...}\)
\(\large{ r }\) = radius \(\large{ in }\) \(\large{ mm }\)

 

oblique cylinder 1

Volume of a Oblique cylinder formula

\(\large{ V = \pi\; r^2\;h }\) 
Symbol English Metric
\(\large{ V }\) = volume \(\large{ in^3 }\) \(\large{ mm^3 }\)
\(\large{ h }\) = height \(\large{ in }\) \(\large{ mm }\)
\(\large{ \pi }\) = Pi  \(\large{3.141 592 653 ...}\)
\(\large{ r }\) = radius \(\large{ in }\) \(\large{ mm }\)

 

Piping Designer Logo 1