# Oblique Cylinder

Written by Jerry Ratzlaff on . Posted in Solid Geometry

• Oblique cylinder (a three-dimensional figure) has both bases not alligned above each other and the center not at 90° to the other base center.
• 2 bases

## Height of a Oblique Cylinder formula

 $$\large{ h = l \; sin\;x }$$

### Where:

$$\large{ h }$$ = height

$$\large{ x }$$ = angle

$$\large{ l }$$ = length

## Lateral surface area of a Oblique Cylinder formula

 $$\large{ A_l = \left(2\;\pi\right) \;r\;l }$$

### Where:

$$\large{ A_l }$$ = lateral surface area (side)

$$\large{ l }$$ = length

$$\large{ r }$$ = radius

$$\large{ \pi }$$ = Pi

## Surface area of a Oblique Cylinder formula

 $$\large{ A_s = l + \left(2\;\pi\right) \;r^2 }$$

### Where:

$$\large{ A_s }$$ = surface area (bottom, top, side)

$$\large{ l }$$ = length

$$\large{ r }$$ = radius

$$\large{ \pi }$$ = Pi

## Volume of a Oblique cylinder formula

 $$\large{ V = \pi\; r^2\;h }$$

### Where:

$$\large{ V }$$ = volume

$$\large{ h }$$ = height

$$\large{ r }$$ = radius

$$\large{ \pi }$$ = Pi