Set Symbols
Set Symbols
| |||
---|---|---|---|
Symbol | Symbol | Definition | Example |
\(\{ \; \}\) | - | set, a collection | \(A= \{ 1, 2, 3, 4 \}\) , \(B= \{ 3, 4, 5, 6 \} \) |
\(\varnothing\) | varnothing | empty set | \(A=\{ \varnothing\} \) |
\(\cap\) | cap | intersection, belonging to set A or B | \(A\cap B =\{3, 4\}\) |
\(\cup\) | cup | union, belonging to set A or B | \(A\cup B =\{1, 2, 3, 4, 5, 6\}\) |
\(\subset\) | subset | strict subset, A is subset of B | \(\{3, 4\} \subset \{3, 4, 5, 6\}\) |
\(\subseteq\) | subseteq | subset, A subset of B, A included in B | \(\{3, 4\} \subseteq \{3, 4\}\) |
\(\nsubseteq\) | nsubseteq | not subset, A not subset of B | \(\{6, 7\} \nsubseteq \{3, 4, 5, 6\}\) |
\(\supset\) | supset | strict superset, A superset of B, B not equal to A | \(\{3, 4, 5, 6\} \supset \{3, 4\}\) |
\(\supseteq\) | supseteq | superset, A subset of B, A includes B | \(\{3, 4, 5, 6\} \supseteq \{3, 4, 5, 6\}\) |
\(\nsupseteq\) | nsupseteq | not superset, A not superset of B | \(\{3, 4, 5, 6\} \nsupseteq \{6, 7\}\) |
\(\uplus\) | uplus | multiset union, A plus B = C | \(A + B = \{ 1, 2, 3, 4, 5, 6 \}\) |
\(\in\) | in | belongs to or element of | \(B=\{3, 4, 5, 6\}\) , \(3\in B\) |
\(\notin\) | notin | does not belong to | \(B=\{3, 4, 5, 6\}\) , \(1\notin B\) |
= | - | equality, both sets the same A=B | \(\{3, 4, 5, 6\} = \{3, 4, 5, 6\}\) |
\(-\) | - | relative complement, belongs to B but not A | \(A-B = \{5, 6\}\) |
\(\ominus\) | ominus | symmetric difference, belongs to A or B gut no matches | \(A \ominus B = \{1, 2, 5, 6\}\) |
\(|\;|\) | - | cardinality, element of set B | \(|B|=\{3\}\) |
\(\mathbb{C}\) | - | complex number set | \(\mathbb{C} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) |
\(\mathbb{N_0}\) | - | natural number set (with 0) | \(\mathbb{N_0} = \{ 0, 1, 2, 3, 4, 5, 6, ... \}\) |
\(\mathbb{N_1}\) | - | natural number set (without 0) | \(\mathbb{N_1} = \{ 1, 2, 3, 4, 5, 6, ... \}\) |
\(\mathbb{R}\) | - | real number set | \(\mathbb{R} = \{3, \frac{3}{4}, 13.45, -3.56, ... \}\) |
\(\mathbb{R}^+\) | - | real number set, positive | \(\mathbb{R} = \{3, \frac{3}{4}, 3.56, ... \}\) |
\(\mathbb{R}^-\) | - | real number set, negative | \(\mathbb{R} = \{-3, -\frac{3}{4}, -3.56, ... \}\) |
\(\mathbb{Q}\) | - | rational number set | \(\mathbb{Q} = \{ \frac{0}{1}, -\frac{1}{8}, \frac{3}{2} \}\) |
\(\mathbb{Q}^+\) | - | rational number set, positive | \(\mathbb{Q} = \{ \frac{0}{1}, \frac{1}{8}, \frac{3}{2} \}\) |
\(\mathbb{Q}^-\) | - | rational number set, negative | \(\mathbb{Q} = \{ -\frac{0}{1}, -\frac{1}{8}, -\frac{3}{2} \}\) |
\(\mathbb{U}\) | - | universal set | \(\mathbb{U} = \{ -3.56, -2, 0, \frac{3}{2}, 13.45, ... \}\) |
\(\mathbb{Z}\) | - | integer number set | \(\mathbb{Z} = \{ ... , -3, -2, -1, 0, 1, 2, 3, ... \}\) |
\(\mathbb{Z}^+\) | - | integer number set, positive | \(\mathbb{Z} = \{ 1, 2, 3, ... \}\) |
\(\mathbb{Z}^-\) | - | integer number set, negative | \(\mathbb{Z} = \{ ... , -3, -2, -1 \}\) |
Tags: Nomenclature and Symbols