Final Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

final velocity 1Final velocity, abbreviated as \(v_f\), is the ending point of motion.

 

Final velocity formulas

\(\large{ v_f = v_i + a \; t  }\) 
\(\large{ v_f = 2 \; \bar {v}  -  v_i  }\) 

Where:

 Units English SI
\(\large{ v_f  }\) = final velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ t }\) = time \(\large{ sec }\) \(\large{ s }\)
\(\large{ \bar {v}  }\) = average velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ v_i  }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

Related Final Velocity formula

\(\large{ v_f =  \alpha_v \; v_i \; \left( T_f \;- \; T_i \right) + v_i   }\)  (volumetric thermal expansion coefficient

Where:

\(\large{ v_f }\) = final velocity

\(\large{ T_f }\) = final temperature

\(\large{ T_i }\) = initial temperature

\(\large{ v_i }\) = initial velocity

\(\large{ \alpha_v }\)  (Greek symbol alpha) = volumetric thermal expansion coefficient

 

Tags: Equations for Velocity