# Final Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Final velocity, abbreviated as $$v_f$$, is the ending point of motion.

## Final velocity formulas

 $$\large{ v_f = v_i + a \; t }$$ $$\large{ v_f = 2 \; \bar {v} - v_i }$$

### Where:

 Units English Metric $$\large{ v_f }$$ = final velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$ $$\large{ a }$$ = acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{s^2}}$$ $$\large{ t }$$ = time $$\large{ sec }$$ $$\large{ s }$$ $$\large{ \bar {v} }$$ = average velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$ $$\large{ v_i }$$ = initial velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$

## Related Final Velocity formula

 $$\large{ v_f = \alpha_v \; v_i \; \left( T_f \;- \; T_i \right) + v_i }$$ (volumetric thermal expansion coefficient)

### Where:

$$\large{ v_f }$$ = final velocity

$$\large{ T_f }$$ = final temperature

$$\large{ T_i }$$ = initial temperature

$$\large{ v_i }$$ = initial velocity

$$\large{ \alpha_v }$$  (Greek symbol alpha) = volumetric thermal expansion coefficient