Initial Velocity

on . Posted in Classical Mechanics

initial velocity 1Initial velocity, abbreviated as \(v_i\), is the starting point at which motion begins.

 

Initial velocity formula

\( v_i \;=\; v_f - a \; t \) 
Symbol English Metric
\( v_i  \) = initial velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( v_f  \) = final velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( a \) = acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( t \) = time \( sec \) \( s \)

  

Initial velocity formula

\( v_i \;=\; ( s \;/\; t )  - ( \frac{1}{2} \; a \; t  )\) 
Symbol English Metric
\( v_i  \) = initial velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( s \) = displacement \( ft \) \( m \)
\( t \) = time \( sec \) \( s \)
\( a \) = acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)

  

Initial velocity formula

\( v_i \;=\; \sqrt{ v_f - ( 2 \; a \; d ) }  \) 
Symbol English Metric
\( v_i  \) = initial velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( v_f  \) = final velocity \(ft\;/\;sec\) \(m\;/\;s\)
\( a \) = acceleration \(ft\;/\;sec^2\) \(m\;/\;s^2\)
\( d  \) = distance \(ft\) \(m\)

 

Piping Designer Logo Slide 1

Tags: Velocity