Initial Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

initial velocity 1Initial velocity, abbreviated as \(v_i\), is the starting point at which motion begins.

 

Initial velocity formulas

\(\large{ v_i = v_f - a \; t }\) 
\(\large{ v_i = \frac { s }{ t }  - \frac { 1 }{ 2 }\; a \; t }\) 

Where:

 Units English SI
\(\large{ v_i  }\) = initial velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ s }\) = displacement \(\large{ ft }\) \(\large{ m }\)
\(\large{ t }\) = time \(\large{ sec }\) \(\large{ s }\)
\(\large{ v_f  }\) = final velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

Related Initial Velocity formula

\(\large{ v_i =  \frac{ v_f }{ a_v  \; \left( T_f \;- \; T_i \right) \;+\; 1 }  }\)  (volumetric thermal expansion coefficient

Where:

\(\large{ v_i }\) = initial velocity

\(\large{ T_f }\) = final temperature

\(\large{ T_i }\) = initial temperature

\(\large{ v_f }\) = final velocity

\(\large{ \alpha_v }\)  (Greek symbol alpha) = volumetric thermal expansion coefficient

 

Tags: Equations for Velocity