Initial Velocity

Written by Jerry Ratzlaff on . Posted in Classical Mechanics Initial velocity, abbreviated as $$v_i$$, is the starting point at which motion begins.

Initial velocity formulas

 $$\large{ v_i = v_f - a \; t }$$ $$\large{ v_i = \frac { s }{ t } - \frac { 1 }{ 2 }\; a \; t }$$

Where:

 Units English SI $$\large{ v_i }$$ = initial velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$ $$\large{ a }$$ = acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{s^2}}$$ $$\large{ s }$$ = displacement $$\large{ ft }$$ $$\large{ m }$$ $$\large{ t }$$ = time $$\large{ sec }$$ $$\large{ s }$$ $$\large{ v_f }$$ = final velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{s}}$$

Related Initial Velocity formula

 $$\large{ v_i = \frac{ v_f }{ a_v \; \left( T_f \;- \; T_i \right) \;+\; 1 } }$$ (volumetric thermal expansion coefficient)

Where:

$$\large{ v_i }$$ = initial velocity

$$\large{ T_f }$$ = final temperature

$$\large{ T_i }$$ = initial temperature

$$\large{ v_f }$$ = final velocity

$$\large{ \alpha_v }$$  (Greek symbol alpha) = volumetric thermal expansion coefficient