Specific Weight

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Specific weight, abbreviated as \( \gamma \) (Greek symbol gamma), is the weight per unit volume of a substance.

 

Specific weight formula

\(\large{ \gamma = \rho \; g }\) 

Where:

 Units US Metric
\(\large{ \gamma }\)  (Greek symbol gamma) = specific weight \(\large{\frac{lbf}{ft^3}}\) \(\large{\frac{N}{m^3}}\)
\(\large{ \rho }\)  (Greek symbol rho) = density \(\large{\frac{lbm}{ft^3}}\) \(\large{\frac{kg}{m^3}}\)
\(\large{ g }\) = gravitational acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)

 

Related Specific Weight formulas

\(\large{ \gamma = \frac{ p \;-\; p_s }{ NPSH \;-\; \frac{ v^2 }{ 2\; g } }  }\)  (Net Positive Suction Head

Where:

\(\large{ \gamma }\)  (Greek symbol gamma) = specific weight

\(\large{ g }\) = gravitational acceleration

\(\large{ NPSH }\) = net positive suction head

\(\large{ p }\) = pressure

\(\large{ p_s }\) = vapor pressure

\(\large{ v }\) = velocity

 

P D Logo 1

 

Tags: Weight Equations