# Specific Weight

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

Specific weight, abbreviated as $$\gamma$$ (Greek symbol gamma), is the weight per unit volume of a substance.

## Specific weight formula

 $$\large{ \gamma = \rho \; g }$$

### Where:

 Units US Metric $$\large{ \gamma }$$  (Greek symbol gamma) = specific weight $$\large{\frac{lbf}{ft^3}}$$ $$\large{\frac{N}{m^3}}$$ $$\large{ \rho }$$  (Greek symbol rho) = density $$\large{\frac{lbm}{ft^3}}$$ $$\large{\frac{kg}{m^3}}$$ $$\large{ g }$$ = gravitational acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{s^2}}$$

## Related Specific Weight formulas

 $$\large{ \gamma = \frac{ p \;-\; p_s }{ NPSH \;-\; \frac{ v^2 }{ 2\; g } } }$$ (Net Positive Suction Head)

### Where:

$$\large{ \gamma }$$  (Greek symbol gamma) = specific weight

$$\large{ g }$$ = gravitational acceleration

$$\large{ NPSH }$$ = net positive suction head

$$\large{ p }$$ = pressure

$$\large{ p_s }$$ = vapor pressure

$$\large{ v }$$ = velocity Tags: Weight Equations