Reduced Viscosity

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Reduced Viscosity formula

\(\large{ \mu_r = \frac {\mu_i} {c} }\)   

Where:

 Units English Metric
\(\large{ \mu_r }\)  (Greek symbol mu) = reduced viscosiy \(\large{\frac{lbf - sec}{ft^2}}\) \(Pa-s\)
\(\large{ \mu }\)  (Greek symbol mu) = dynamic viscosity \(\large{\frac{lbf - sec}{ft^2}}\) \(Pa-s\)
\(\large{ c }\) = mass concentration \(\large{ lbm }\) \(\large{ kg }\)
\(\large{ \mu_i }\)  (Greek symbol mu) = relative viscosity increment \(\large{\frac{lbf - sec}{ft^2}}\) \(Pa-s\)
\(\large{ \mu_s }\)  (Greek symbol mu) = viscosity of a solution used \(\large{\frac{lbf - sec}{ft^2}}\) \(Pa-s\)

Solve for:

\(\large{ \mu_i = \frac { \mu \;-\; \mu_s }  { \mu_s }  }\)   

 

P D Logo 1

Tags: Viscosity Equations