Ekman Number formula |
||
\( Ek \;=\; \dfrac{ \nu }{ 2 \cdot \omega \cdot l_c^2 }\) (Ekman Number) \( \nu \;=\; 2 \cdot Ek \cdot \omega \cdot l_c^2 \) \( \omega \;=\; \dfrac{ \nu }{ 2 \cdot Ek \cdot l_c^2 }\) \( l_c \;=\; \sqrt{ \dfrac{ \nu }{ 2 \cdot \omega \cdot Ek } }\) |
||
Symbol | English | Metric |
\( Ek \) = Ekman Number | \( dimensionless \) | \( dimensionless \) |
\( \nu \) (Greek symbol nu) = Fluid Kinematic Viscosity | \(ft^2 \;/\; sec\) | \(m^2 \;/\; s\) |
\( \omega \) (Greek symbol omega) = Angular Velocity of the Rotation System | \(deg \;/\; sec\) | \(rad \;/\; s\) |
\( l_c \) = Characteristic Length Scale of the System | \(ft\) | \(m\) |
Ekman number, abbreviated as Ek, a dimensionless number, used in fluid dynamics to describe the ratio of viscous forces to Coriolis forces in a rotating fluid system.
Ekman Number Interpretation