Rotating Horsepower
Rotation horsepower, abbreviated as \(HP_r\), is converting the objects horsepower into rotational motion.
Rotating Horsepower formula |
||
\(\large{ HP_r = \frac{ \tau \; s }{ 5252 } }\) | ||
Symbol | English | Metric |
\(\large{ HP_r }\) = rotating horsepower | \(\large{\frac{lbf-ft}{sec}}\) | \(\large{\frac{Btu}{s}}\) |
\(\large{s}\) = rotation shaft speed, RPM | \(\large{\frac{ft}{sec}}\) | \(\large{\frac{m}{s}}\) |
\(\large{ \tau }\) (Greek symbol tau) = torque | \(\large{lbf-ft}\) | \( N-m \) |
- \(\large{ 1 \; HP = 5252\; RPM }\) When charting torque and horsepower, the math always cross at 5252 RPM.
Rotating Horsepower formula |
||
\(\large{ RHP = \tau \; \frac{ s }{ 33,000 } \; 2 \; \pi }\) | ||
Symbol | English | Metric |
\(\large{ HP_r }\) = rotating horsepower | \(\large{\frac{lbf-ft}{sec}}\) | \(\large{\frac{Btu}{s}}\) |
\(\large{ \pi }\) = Pi | \(\large{3.141 592 653 ...}\) | |
\(\large{s}\) = rotational shaft speed, RPM | \(\large{\frac{ft}{sec}}\) | \(\large{\frac{m}{s}}\) |
\(\large{ \tau }\) (Greek symbol tau) = torque | \(\large{lbf-ft}\) | \( N-m \) |
- \(\large{ 1 \; HP = 33,000 \; \frac{lbm-ft}{min} }\)