Water Hammer Flow Velocity
Water Hammer Flow Velocity Formula |
||
|
\( v \;=\; \dfrac{ ( p_{inc} - p_i ) \cdot t }{ 0.070 \cdot L }\) \( p_{inc} \;=\; \dfrac{ 0.070 \cdot L \cdot v }{ t } + p_i\) \( p_i \;=\; p_{inc} - \dfrac{ 0.070 \cdot L \cdot v }{ t } \) \( t \;=\; \dfrac{ 0.070 \cdot L \cdot v }{ p_{inc} - p_i } \) \( L \;=\; \dfrac{ ( p_{inc} - p_i ) \cdot t }{ 0.070 \cdot v } \) |
||
| Symbol | English | Metric |
| \( v \) = Flow Velocity | \(ft \;/\;sec\) | - |
| \( p_{inc} \) = Pressure Increase | \(lbf \;/\; in^2\) | - |
| \( p_i \) = Inlet Pressure | \(lbf \;/\; in^2\) | - |
| \( t \) = Valve Closing Time | \(sec\) | - |
| \( L \) = Upstream Pipe Length | \(ft\) | - |
Water hammer flow velocity is the speed at which a pressure wave travels through a fluid (typically water) in a pipe system when there is a sudden change in flow, such as when a valve is quickly closed or opened.

