Skip to main content

Hagen–Poiseuille Law

Hagen–Poiseuille law, also called Hagen–Poiseuille equation, Poiseuille equation, or Poiseuille law, describes the flow of a viscous, incompressible fluid through a cylindrical tube, such as petroleum through a pipe.  It relates the pressure drop across the tube to the flow rate, fluid viscosity, and tube dimensions.  In simple terms, it’s a way to calculate how much fluid (like petroleum) moves through a pipe under specific conditions.

   

Hagen–Poiseuille Law Formula

\( Q \;=\; \dfrac{ \pi \cdot r^4 \cdot \Delta p }{ 8 \cdot \mu \cdot L }\)     (Hagen–Poiseuille Law)

\( r \;=\;  \left(  \dfrac{ \pi \cdot \Delta p }{ 8 \cdot \mu \cdot L \cdot Q}  \right)^{ \frac{1}{4} }  \)

\( \Delta p \;=\; \dfrac{ 8 \cdot \mu \cdot L \cdot Q }{ \pi \cdot r^4 }\)

\( \mu \;=\; \dfrac{  \pi \cdot r^4 \cdot \Delta p }{ 8 \cdot L \cdot Q }\)

\( L \;=\;  \dfrac{ \pi \cdot r^4 \cdot \Delta p }{ 8 \cdot \mu \cdot Q }\)

Symbol English Metric
 \( Q \) = Volumetric Flow Rate \(ft^3\;/\;sec\)  \(m^3\;/\;s\) 
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)
 \( r \) = Pipe Inside Radius \(in\)  \(mm\) 
\( \Delta p \) = Pressure Loss (psi) between the Ends of the Pipe \(lbf\;/\;in^2\)  \(Pa\) 
\( \mu \)  (Greek symbol mu) = Dynamic Viscosity (for Petroleum, this Depends on its Type and Temperature) \(lbf-sec\;/\;ft^2\) \(Pa-s\)
\( L \) = Pipe Length \(ft\) \(m\)

  

Hagen–Poiseuille Law Formula

\( \eta \;=\; \dfrac{ ( p_o - p_i ) \cdot \pi \cdot r^4 \cdot \rho  }{ 8 \cdot \dot m_f \cdot L }\)     (Hagen–Poiseuille Law)

\( p_o \;=\;  \left( \dfrac{ 8 \cdot \dot m_f \cdot L \cdot \eta  }{  \pi \cdot r^4 \cdot \rho } \right) + p_i \)

\( p_i \;=\;  p_o  - \left( \dfrac{ 8 \cdot \dot m_f \cdot L \cdot \eta  }{  \pi \cdot r^4 \cdot \rho } \right)  \)

\( r \;=\;   \left( \dfrac{ 8 \cdot \dot m_f \cdot L \cdot \eta  }{ ( p_o - p_i ) \cdot \pi \cdot \rho } \right)^{ \frac{1}{4} }  \)

\( \rho \;=\;  \dfrac{ 8 \cdot \dot m_f \cdot L \cdot \eta  }{ ( p_o - p_i ) \cdot \pi \cdot r^4  } \)

\( \dot m_f \;=\; \dfrac{ ( p_o - p_i ) \cdot \pi \cdot r^4 \cdot \rho  }{ 8 \cdot \eta \cdot L  }\)

\( L  \;=\; \dfrac{  ( p_o - p_i ) \cdot \pi \cdot r^4 \cdot \rho  }{ 8 \cdot \dot m_f \cdot \eta  }\)

Symbol English Metric
\( \eta \)  (Greek symbol eta) = Medium Viscosity \(lbf - sec \;/\; ft^2\) \( Pa - s \)
\( p_o \) = Output Pressure (psi) \(lbf \;/\; in^2\) \(Pa\)
\( p_i \) = Input Pressure (psi) \(lbf \;/\; in^2\) \(Pa\)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)
\( r \) = Pipe Inside Radius \(in\) \(mm\)
\( \rho \)   (Greek symbol rho) = Fluid Density \(lbm \;/\; ft^3\) \(kg \;/\; m^3\)
\( \dot m_f \) = Mass Flow Rate \(lbm \;/\; sec\) \(kg \;/\; s\)
\( L \) = Pipe Length \(ft\) \(m\)

 

Piping Designer Logo 1