Centripetal Acceleration

on . Posted in Classical Mechanics

acceleration centripetal 3Centripetal acceleration, abbreviated as \( a_c \), is the change in the velocity, which is a vector, either in speed or direction as an object makes its way around a circular path.  Abbreviated ac, centripetal acceleration points towards the center of the circular path that keeps an object in an elliptical orbit with the direction of the velocity vector constantly changing.

 

Centripetal acceleration formula

\(\large{ a_c = \frac{ v^2 }{ r }   }\) 
Symbol English Metric
\(\large{ a_c }\) = centripetal acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ r }\) = radius \(\large{ft}\) \(\large{m}\)
\(\large{ v }\) = velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)

 

Centripetal acceleration formula

\(\large{ a_c = \omega^2 \; r  }\) 
Symbol English Metric
\(\large{ a_c }\) = centripetal acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{s^2}}\)
\(\large{ \omega }\)  (Greek symbol omega) = angular velocity \(\large{\frac{ft}{sec}}\) \(\large{\frac{m}{s}}\)
\(\large{ r }\) = radius \(\large{ft}\) \(\large{m}\)

 

Centripetal Acceleration Calculator

 

Piping Designer Logo 1

Tags: Acceleration Equations