# Acceleration

Written by Jerry Ratzlaff on . Posted in Classical Mechanics Acceleration, abbreviated as a, is the rate of change of velocity.  Whenever a mass experiences a force, an acceleration is acting.  Acceleration is a vector quantity having magnitude and direction, some of these include displacement, drag, force, lift, momentum, thrust, torque, velocity and weight.

## Acceleration formulas

 $$\large{ a = \frac{ \Delta v }{ t } }$$ $$\large{ a = \frac{ v_f \;-\; v_i }{ t } }$$ $$\large{ a = \frac{ v_f \;-\; v_i }{ t_f \;-\; t_i } }$$ $$\large{ a = \frac{ F }{ m } }$$ $$\large{ a = \frac{ F }{ p } }$$

### Where:

 Units US SI $$\large{ a }$$ = acceleration $$\large{\frac{ft}{sec^2}}$$ $$\large{\frac{m}{sec^2}}$$ $$\large{ F }$$ = force $$\large{lb_f}$$ $$\large{N}$$ $$\large{ m }$$ = mass $$\large{lb_m}$$ $$\large{kg}$$ $$\large{ t }$$ = time $$\large{seconds}$$ $$\large{ t_f }$$ = final time $$\large{seconds}$$ $$\large{ t_i }$$ = initial time $$\large{seconds}$$ $$\large{ p }$$ = pressure $$\large{\frac{lb_f}{in^2}}$$ $$\large{Pa}$$ $$\large{\frac{N}{m^2}}$$ $$\large{ v }$$ = velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{sec}}$$ $$\large{ \Delta v }$$ = velocity differential $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{sec}}$$ $$\large{ v_f }$$ = final velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{sec}}$$ $$\large{ v_i }$$ = initial velocity $$\large{\frac{ft}{sec}}$$ $$\large{\frac{m}{sec}}$$