Acceleration

Written by Jerry Ratzlaff on . Posted in Classical Mechanics

acceleration 8Acceleration, abbreviated as a, is the rate of change of velocity.  Whenever a mass experiences a force, an acceleration is acting.  Acceleration is a vector quantity having magnitude and direction, some of these include displacement, drag, force, lift, momentum, thrust, torque, velocity and weight.

 

Acceleration Calculator

 

Acceleration formulas

\(\large{ a = \frac{ \Delta v }{ t } }\)   
\(\large{ a = \frac{ v_f \;-\; v_i }{ t } }\)   
\(\large{ a = \frac{ v_f \;-\; v_i }{ t_f \;-\; t_i } }\)   
\(\large{ a = \frac{ F }{ m } }\)  
\(\large{ a = \frac{ F }{ p } }\)  

Where:

Units  US SI
\(\large{ a }\) = acceleration \(\large{\frac{ft}{sec^2}}\) \(\large{\frac{m}{sec^2}}\) 
\(\large{ F }\) = force  \(\large{lb_f}\)  \(\large{N}\)
\(\large{ m }\) = mass  \(\large{lb_m}\)  \(\large{kg}\)
\(\large{ t }\) = time  \(\large{seconds}\)
\(\large{ t_f }\) = final time  \(\large{seconds}\)
\(\large{ t_i }\) = initial time  \(\large{seconds}\)
\(\large{ p }\) = pressure  \(\large{\frac{lb_f}{in^2}}\) \(\large{Pa}\)
\(\large{\frac{N}{m^2}}\) 
\(\large{ v }\) = velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\) 
\(\large{ \Delta v }\) = velocity differential \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\) 
\(\large{ v_f }\) = final velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\) 
\(\large{ v_i }\) = initial velocity \(\large{\frac{ft}{sec}}\)  \(\large{\frac{m}{sec}}\) 
 

Tags: Equations for Acceleration Calculators