Isobaric Process - Entropy

on . Posted in Thermodynamics

     

Isobaric Process - Entropy Formula

\( S  \;=\;  \Delta S \cdot C_p \cdot \left( ln \cdot \dfrac{ T_f }{ T_i } \right)  \) 
Symbol English Metric
\( S \) = Entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( \Delta S \) = Entropy Change \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( C_p \) = Heat Capacity at Constant Pressure \(Btu \;/\; R\) \(kJ \;/\; K\)
\( ln \) = Natural Logarithm \(dimensionless\) \(dimensionless\)
\( T_f \) = Final Temperature \(R\) \(K\)
\( T_i \) = Initial Temperature \(R\) \(K\)

      

Isobaric Process - Entropy Formula

\( S  \;=\;   \Delta S \cdot ( n \cdot C_v) \cdot  \left( ln \cdot \dfrac{ T_f }{ T_i } \right)  \) 
Symbol English Metric
\( S \) = entropy \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( \Delta S \) = Entropy Change \(Btu \;/\; lbm-R\) \(kJ \;/\; kg-K\)
\( n \) = Number of Moles \(dimensionless\) \(dimensionless\)
\( C_v \) = Heat Capacity at Constant Pressure \(Btu \;/\; R\) \(kJ \;/\; K\)
\( ln \) = Natural Logarithm \(dimensionless\) \(dimensionless\)
\( T_f \) = Final Temperature \(R\) \(K\)
\( T_i \) = Initial Temperature \(R\) \(K\)

 

P D Logo 1 

Tags: Pressure Heat Energy Constant Entropy