Skip to main content
  • ellipse 10ellipse 13Ellipse (a two-dimensional figure) is a conic section or a stretched circle.  It is a flat plane curve that when adding togeather any two distances from any point on the ellipse to each of the foci will always equal the same.
  • Foci is a point used to define the conic section.  F and G seperately are called "focus", both togeather are called "foci".
  • The perimeter of an ellipse formula is an approximation that is about 5% of the true value as long as "a" is no more than 3 times longer than "b".
  • Latus rectum is a line drawn perpencicular to the transverse axis of the ellipse and is passing through the foci of the ellipse.
  • The major axis is always the longest axis in an ellipse.
  • The minor axis is always the shortest axis in an ellipse.

 

Standard Ellipse formulas

\( \dfrac{ x^2}{a^2}  +  \dfrac{ y^2}{x^2}  \;=\; 1  \) 

\(  \left(\dfrac{ x}{a } \right)^2  +  \left( \dfrac{ y}{x} \right)^2  \;=\; 1  \) 

\(   \dfrac{ \left( x - h \right )^2 }{ a^2 }  +   \dfrac{ \left( y - k \right )^2 }{ b^2 }  \;=\; 1  \)     (Major Axis Horizontal)

 \(  \dfrac{ \left( x - h \right )^2 }{ b^2 }   +    \dfrac{ \left( y - k \right )^2 }{ a^2 }  \;=\; 1  \)     (Major axis Vertical)

Symbol English Metric
\( x \) = horizontal coordinate of a point on the ellipse \( in \) \( mm \)
\( y \) = vertical coordinate of a point on the ellipse \( in \) \( mm \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( h \) and \(\large{ k }\) = center point of ellipse \( in \) \( mm \)

 

Area of an Ellipse formula

\( A \;=\; \pi \cdot a \cdot b \) 
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)

 

Circumference of an Ellipse formula

\( C \;=\;      2 \cdot \pi \cdot  \sqrt{  \dfrac{ a^2 + b^2 }{ 2 }  }  \) 
Symbol English Metric
\( C \) = circumference \( in \) \( mm \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)

  

eccentricity of an Ellipse formula

\( \epsilon \;=\; \sqrt{  \dfrac{ a^2 - b^2 }{ a^2 } }   \) 

\( \epsilon \;=\;   \left(  \dfrac{ 1 - b^2 }{ a^2 } \right)^{0.5}  \)

\( \epsilon \;=\; \sqrt{   1 - \dfrac{ b^2 }{ a^2 }  } \)

Symbol English Metric
\( \epsilon \)  (Greek symbol epsilon) = eccentricity \( dimensionless \) \(3.141 592 653 ...\)
\( a \) = one half of the ellipse's major axis \( in \) \( mm \)
\( a \) = one half of the ellipse's minor axis \( in \) \( mm \)

  

Perimeter of an Ellipse formulas

  • This is an approximate perimeter of an ellipse formula.  There is no easy way to calculate the ellipse perimeter with high accuracy.

\( p \;\approx\; 2\cdot \pi \cdot \sqrt{ \dfrac{ 1}{2} \cdot \left(a^2 + b^2 \right) } \) 

\( p \;\approx\; 2 \cdot \pi \cdot \sqrt{  \dfrac{ a^2 + b^2}{2}  }\)

Symbol English Metric
\( p \) = perimeter approximation \( in \) \( mm \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)

 

Latus Rectum of an Ellipse formula

\( L \;=\;   \dfrac{ 2 \cdot b^2 }{ a }\) 
Symbol English Metric
\( L \) = Latus rectum \( in \) \( mm \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)

 

Semi-major Axis Length of an Ellipse formula

\( a \;=\;  \dfrac{  A }{ pi \cdot b }\) 
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)

 

Semi-minor Axis Length of an Ellipse formula

\( b \;=\;  \dfrac{ A }{ pi \cdot a }\) 
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( a \) = length semi-major axis \( in \) \( mm \)
\( b \) = length semi-minor axis \( in \) \( mm \)
\( \pi \) = Pi \(3.141 592 653 ...\) \(3.141 592 653 ...\)

 

Piping Designer Logo 1