Average Angular Velocity Change in Velocity Formulas |
||
\bar {\omega} \;=\; \dfrac{ \omega_t }{ t_t } \bar {\omega} \;=\; \dfrac{ \omega_1 + \omega_2 + \omega_3 ... \omega_n }{ t_1 + t_2 + t_3 ... t_n } |
||
Symbol | English | Metric |
\bar {\omega} (Greek symbol omega) = average angular velocity | deg \;/\; sec | rad \;/\; s |
\omega (Greek symbol omega) = angular velocity | deg \;/\; sec | rad \;/\; s |
t = time | sec | s |
\omega_t (Greek symbol omega) = total angular velocity | deg \;/\; sec | rad \;/\; s |
t_t = total time | sec | s |
When an object makes changes in its angular velocity at different times that is an average angular velocity of any given velocities.