Trajectory of a projectile on a hill introduces some extra complexity compared to the flat-ground case, because the "ground" itself is no longer level, it’s inclined. This affects the projectile’s path, range, and landing point, since the hill’s slope changes the reference plane and the conditions for where the projectile stops. Let’s break it down step-by-step.
Trajectory of a Projectile on a Hill formulas |
||
\( t \;=\; \dfrac{ 2 \cdot v_{0h} }{ g } \pm \sqrt{ \dfrac{ v_{0h}^2 }{ g^2 } - \dfrac{ 2 \cdot h }{ g } } \) \( d \;=\; v_{0d} \cdot t \) \( h \;=\; v_{0h} \cdot t - \dfrac{1}{2} \cdot g \cdot t^2 \) |
||
Symbol | English | Metric |
\( t \) = time | \(sec\) | \(s\) |
\( g \) = gravitational acceleration | \(ft\;/\;sec^2\) | \(m\;/\;s^2\) |
\( v_0 \) = launch velocity | \(ft\;/\;sec\) | \(m\;/\;s\) |
\( \theta \) = vertical angle | \(rad\) | \(rad\) |