Skip to main content

Brinkman Number

 

Brinkman number formula

\( Br \;=\;   \dfrac{ \mu \cdot U^2  }{ k \cdot \Delta T  }\)     (Brinkman Number)

\( \mu \;=\;   \dfrac{ Br \cdot k \cdot \Delta T  }{  U^2  }\) 

\( U \;=\;  \sqrt{ \dfrac{ Br \cdot  k \cdot \Delta T  }{  \mu }  }\) 

\( k \;=\;   \dfrac{ \mu \cdot U^2  }{ Br \cdot \Delta T  }\)

\( \Delta T \;=\;   \dfrac{ \mu \cdot U^2  }{ Br \cdot  k  }\)

Symbol English Metric
\( Br \) = Brinkman Number \( dimensionless \) \( dimensionless \)
\( \mu \)  (Greek symbol mu) = Fuid Dynamic Viscosity \(lbf-sec\;/\;ft^2\) \(Pa-s \)
\( U \) = Characteristic Velocity \(ft \;/\; sec\) \(m \;/\; s\)
\( k \) = Fluid Thermal Conductivity \(Btu-ft\;/\;hr-ft^2-F\) \(W\;/\;m-K\)
\( \Delta T \) = System Characteristic Temperature \(F\) \(K\)

 Brinkman Number, abbreviated as Br, a dimensionless number, used in fluid dynamics and heat transfer to characterize the relative importance of viscous heating to heat conduction in a fluid flow.  It’s commonly used in non-Newtonian fluid mechanics, microfluidics, and engineering applications where viscous effects play a critical role in temperature distribution.

Brinkman Number Interpretation

  • Low Brinkman Number (MA << 1)  -  Indicates that viscous heating dominates over heat conduction, which can be significant in high-viscosity fluids or high-speed flows (polymer processing or lubrication)
  • .High Brinkman Number (Br >> 1)  -  Suggests that heat conduction dominates, and viscous heating effects are negligible (in low-viscosity fluids like water under typical conditions).
  • The numerator (\( \mu \cdot U^2 \)) represents the heat generated due to viscous dissipation (friction within the fluid).
  • The denominator (\(k \cdot \Delta T\)) represents the heat conducted away from the system.

Piping Designer Logo 1