Braking Distance
Braking Distance Formula |
||
\( B_d \;=\; 1.075 \cdot \dfrac{ V^2 }{ a } \) (Braking Distance) \( V \;=\; \sqrt{ \dfrac{ B_d \cdot a }{ 1.075} } \) \( a \;=\; \dfrac{ V^2 \cdot 1.075 }{ B_d }\) |
||
Symbol | English | Metric |
\( B_d \) = Braking Distance | \(ft\) | \(m\) |
\( V \) = Design Speed | \( ft \;/\; sec \) | \(m \;/\; s\) |
\( a \) = Deceleration Rate | \( ft \;/\; sec \) | \(m \;/\; s\) |
Breaking distance, abbreviated as \(B_d\), is the distance a vehicle travels from the moment the brakes are fully applied until the vehicle comes to a complete stop. It is a critical factor in understanding the overall stopping distance of a vehicle and is influenced by various factors, including vehicle speed, road conditions, vehicle weight, braking system efficiency, and tire grip. Braking distance consists of two main components: the initial portion where the vehicle is decelerating, and the latter portion where the vehicle is at a lower speed and is gradually coming to a stop.
AASHTO Exhibit 3-1 Stopping Sight Distance
|
||||
Design Speed |
Design Speed Distance |
Braking Distance on Level | Stopping Sight Distance | |
Calculated | Design | |||
15 | 55.1 | 21.6 | 76.7 | 80 |
20 | 73..5 | 38.4 | 111.9 | 115 |
25 | 91.9 | 60.0 | 151.9 | 155 |
30 | 110.3 | 86.4 | 196.7 | 200 |
35 | 128.6 | 117.6 | 246.2 | 250 |
40 | 147.0 | 153.6 | 300.6 | 305 |
45 | 165.4 | 194.4 | 359.8 | 360 |
50 | 183.8 | 240.0 | 423.8 | 425 |
55 | 202.1 | 290.3 | 492.4 | 495 |
60 | 220.5 | 345.5 | 566.0 | 570 |
65 | 238.9 | 4.505 | 644.4 | 645 |
70 | 257.3 | 470.3 | 727.6 | 730 |
75 | 275.6 | 539.9 | 815.5 | 820 |
80 | 294.0 | 614.3 | 908.3 | 910 |