Power Output of a Dam
The power output of a dam depends on several factors, including the height of the water, the flow rate of the water, and the efficiency of the turbines and generators. The actual power can vary significantly based on the specific dam's design and water availability.
Power Output of a Dam Formula |
||
\( P \;=\; \eta \cdot \rho \cdot g \cdot h \cdot Q \) (Power Output of a Dam) \( \eta \;=\; \dfrac{ P }{ \rho \cdot g \cdot h \cdot Q }\) \( \rho \;=\; \dfrac{ P }{ \eta \cdot g \cdot h \cdot Q }\) \( g \;=\; \dfrac{ P }{ \eta \cdot \rho \cdot h \cdot Q }\) \( h \;=\; \dfrac{ P }{ \eta \cdot \rho \cdot g \cdot Q }\) \( Q \;=\; \dfrac{ P }{ \eta \cdot \rho \cdot g \cdot h }\) |
||
Symbol | English | Metric |
\( P \) = Power Output | \( W \) | \( W \) |
\( \eta \) (Greek symbol eta) = Turbine Efficency | \( dimensionless \) | \( dimensionless \) |
\( \rho \) (Greek symbol rho) = Water Density | \(lbm\;/\;ft^3\) | \(kg\;/\;m^3\) |
\( g \) = Gravitational Acceleration | \(ft\;/\;sec^2\) | \(m\;/\;s^2\) |
\( h \) = Head (Usable Water Fall Height) | \(ft\) | \(m\) |
\( Q \) = Discharge Flow Rate | \(ft^3 \;/\; sec\) | \(m^3 \;/\; s\) |
Tags: Water Power Hydrology Environmental