Square I Beam
Three rectangles, two that intersect at the center at 90° angles to the end of one rectangle.
- A square I beam is a structural shape used in construction.
Structural Steel
area of a Square I Beam formula
\(\large{ A = w\;l \;-\; h \; \left( w \;-\; t \right) }\) |
Where:
\(\large{ A }\) = area
\(\large{ h }\) = height
\(\large{ l }\) = height
\(\large{ t }\) = thickness
\(\large{ w }\) = width
Distance from Centroid of a Square I Beam formulas
\(\large{ C_x = \frac{ w }{ 2 } }\) | |
\(\large{ C_y = \frac{ l }{ 2} }\) |
Where:
\(\large{ C }\) = distance from centroid
\(\large{ l }\) = height
\(\large{ s }\) = thickness
\(\large{ w }\) = width
Elastic Section Modulus of a Square I Beam formulas
\(\large{ S_{x} = \frac{ I_{x} }{ C_{y} } }\) | |
\(\large{ S_{y} = \frac{ I_{y} }{ C_{x} } }\) |
Where:
\(\large{ S }\) = elastic section modulus
\(\large{ C }\) = distance from centroid
\(\large{ I }\) = moment of inertia
Perimeter of a Square I Beam formula
\(\large{ P = 2 \; \left( 2\;w + l \;-\; t \right) }\) |
Where:
\(\large{ P }\) = perimeter
\(\large{ l }\) = height
\(\large{ t }\) = thickness
\(\large{ w }\) = width
Polar Moment of Inertia of a Square I Beam formulas
\(\large{ J_{z} = I_{x} + I_{y}{^2} }\) | |
\(\large{ J_{z1} = I_{x1} + I_{y1}{^2} }\) |
Where:
\(\large{ J }\) = torsional constant
\(\large{ I }\) = moment of inertia
Radius of Gyration of a Square I Beam formulas
\(\large{ k_{x} = \sqrt{ \frac{ w\;l^3 \;-\; h^3 \left( w \;-\; t \right) }{ 12 \; \left [ w\;l \;-\; h \; \left( w \;-\; t \right) \right ] } } }\) | |
\(\large{ k_{y} = \sqrt{ \frac{ 2\;s\;w^3 \;+\; h\;t^3 }{ 12 \; \left [ w\;l \;-\; h \; \left( w \;-\; t \right) \right ] } } }\) | |
\(\large{ k_{z} = \sqrt{ k_{x}{^2} + k_{y}{^2} } }\) | |
\(\large{ k_{x1} = \sqrt{ \frac { I_{x1} } { A } } }\) | |
\(\large{ k_{y1} = \sqrt{ \frac { I_{y1} } { A } } }\) | |
\(\large{ k_{z1} = \sqrt{ k_{x1}{^2} + k_{y1}{^2} } }\) |
Where:
\(\large{ k }\) = radius of gyration
\(\large{ k }\) = radius of gyration
\(\large{ h }\) = height
\(\large{ l }\) = height
\(\large{ s }\) = thickness
\(\large{ t }\) = thickness
\(\large{ w }\) = width
Second Moment of Area of a Square I Beam formulas
\(\large{ I_{x} = \frac{ w\;l^3 \;-\; h^3 \left( w \;-\; t \right) }{12} }\) | |
\(\large{ I_{y} = \frac{ 2\;s\;w^3 \;+\; h\;t^3 }{12} }\) | |
\(\large{ I_{x1} = l_{x} + A\;C_y }\) | |
\(\large{ I_{y1} = l_{y} + A\;C_x }\) |
Where:
\(\large{ I }\) = moment of inertia
\(\large{ A }\) = area
\(\large{ C }\) = distance from centroid
\(\large{ I }\) = moment of inertia
\(\large{ h }\) = height
\(\large{ l }\) = height
\(\large{ s }\) = thickness
\(\large{ t }\) = thickness
\(\large{ w }\) = width
Torsional Constant of a Square I Beam formula
\(\large{ J = \frac{ 2\;w\;t^3 + \left( l \;-\; s \right) \; t^3 }{ 3 } }\) |
Where:
\(\large{ J }\) = torsional constant
\(\large{ l }\) = height
\(\large{ s }\) = thickness
\(\large{ t }\) = thickness
\(\large{ w }\) = width
Tags: Equations for Inertia Equations for Structural Steel Equations for Modulus