Skip to main content

area of a Cross formula

\( A \;=\;   l\cdot t  +  s \cdot  \left( w - t  \right)  \) 
Symbol English Metric
\(A \) = area \( in^2 \) \( mm^2 \)
\( l \) = height \( in \) \( mm \)
\( s \) = thickness \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

cross beam 1Cross is a type of structural beam with a cross shaped cross-sectional profile.  The cross has a central vertical web and horizontal flanges at the center of the vertical web.  The web and flange can have varying dimensions and thicknesses, depending on the specific load bearing requirements and design considerations of the structure. 

Piping Designer Logo 1

 

Distance from Centroid of a Cross formulas

\( C_x \;=\; \dfrac{ w }{ 2  }  \) 

\( C_y \;=\; \dfrac{ l }{ 2  }  \) 

Symbol English Metric
\( C \) = distance from centroid \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

cross beam 1 

 

 

 

 

 

 

Elastic Section Modulus of a Cross formulas

\( S_{x} \;=\;  \dfrac{ I_{x} }{ C_{y}   } \) 

\( S_{y} \;=\;  \dfrac{ I_{y} }{ C_{x}   } \) 

Symbol English Metric
\( S \) = elastic section modulus \( in^3 \) \( mm^3 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 cross beam 1

 

 

 

 

 

 

 

Perimeter of a Cross formula

\( A \;=\;   2 \cdot \left( w  +  l   \right)  \) 
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( l \) = height \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 cross beam 1

 

 

 

 

 

Polar Moment of Inertia of a Cross formulas

\( J_{z} \;=\;   I_{x}  +  I_{y} \)

\( J_{z1} \;=\;   I_{x1}  +  I_{y1} \) 

Symbol English Metric
\( J \) = torsional constant \(\large{ in^4 }\) \( mm^4 \)
\( I \) = moment of inertia \(\large{ in^4 }\) \( mm^4 \)

 cross beam 1

 

 

 

 

 

 

Radius of Gyration of a Cross formulas

\( k_{x} \;=\;   \sqrt{  \dfrac{  t\cdot  l^3 +  s^3 \cdot \left( w - t \right)    }{ 12 \cdot \left[  l\cdot t +  s \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{y} \;=\;   \sqrt{  \dfrac{  s\cdot w^3 +  t^3 \cdot \left( l - s \right)  }{ 12 \cdot \left[  l\cdot t +  s \cdot \left( w - t \right) \right]    }   }   \) 

\( k_{z} \;=\;     \sqrt{  k_{x}{^2} + k_{y}{^2}  } \) 

\( k_{x1} \;=\;   \sqrt{  \dfrac { I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;    \sqrt{  \dfrac { I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  } \)

Symbol English Metric
\(\large{ k }\) = radius of gyration \( in \) \( mm \)
\(\large{ A }\) = area \( in^2 \) \( mm^2 \)
\(\large{ l }\) = height \( in \) \( mm \)
\(\large{ s }\) = thickness \( in \) \( mm \)
\(\large{ t }\) = thickness \( in \) \( mm \)
\(\large{ w }\) = width \( in \) \( mm \)

cross beam 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second Moment of Area of a Cross formulas

\( I_{x} \;=\;   \dfrac{  t\cdot l^3 +  s^3 \cdot  \left( w - t \right)   }{12}   \) 

\( I_{y} \;=\;   \dfrac{  s\cdot w^3 +  t^3 \cdot  \left( l - s \right)   }{12}   \) 

\( I_{x1} \;=\;    I_{x}  +  A\cdot C_{y}{^2} \) 

\( I_{y1} \;=\;    I_{y}  +  A\cdot C_{x}{^2} \)

Symbol English Metric
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( C \) = distance from centroid \(\large{ in }\) \( mm \)
\( l \) = height \(\large{ in }\) \( mm \)
\( s \) = thickness \(\large{ in }\) \( mm \)
\( t \) = thickness \(\large{ in }\) \( mm \)
\( w \) = width \(\large{ in }\) \( mm \)

 cross beam 1