# Square T Beam

on . Posted in Plane Geometry

Square T-beam, also called T-shaped beam or Tee beam, is a type of structural beam with a T-shaped cross-sectional profile.  Unlike a standard I-beam that has a central vertical web and horizontal flanges at the top and bottom, a T-beam has a vertical stem and a horizontal flange extending from the stem at the top.  This configuration creates a cross-sectional shape that resembles the letter "T."  A Square T-beam is characterized by having equal-length stem and flange portions, resulting in a symmetrical T-shape.  The stem and flange can have varying dimensions and thicknesses, depending on the specific load bearing requirements and design considerations of the structure.

## area of a Square T Beam formula

$$\large{ A = w\;s + h\;t }$$
Symbol English Metric
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height  $$\large{ in }$$  $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = width  $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Distance from Centroid of a Square T Beam formulas

$$\large{ C_x = 0 }$$

$$\large{ C_y = \frac { l^2\; t \;+\; s^2 \; \left( w \;-\; t \right) } { 2\; \left( w\;s \;+\; h\;t \right) } }$$

Symbol English Metric
$$\large{ C }$$ = distance from centroid  $$\large{ in }$$  $$\large{ mm }$$
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ h }$$ = height  $$\large{ in }$$  $$\large{ mm }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = width  $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Elastic section Modulus of a Square T Beam formulas

$$\large{ S_{x} = \frac { I_{x} }{ C_{y} } }$$

$$\large{ S_{y} = \frac { I_{y} }{ C_{x} } }$$

Symbol English Metric
$$\large{ S }$$ = elastic section modulus $$\large{ in^3 }$$ $$\large{ mm^3 }$$
$$\large{ C }$$ = distance from centroid $$\large{ in }$$ $$\large{ mm }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$

## Perimeter of a Square T Beam formula

$$\large{ P = 2\; \left( w + h + s \right) }$$
Symbol English Metric
$$\large{ P }$$ = perimeter  $$\large{ in }$$  $$\large{ mm }$$
$$\large{ h }$$ = height  $$\large{ in }$$  $$\large{ mm }$$
$$\large{ s }$$ = width  $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Polar Moment of Inertia of a Square T Beam formulas

$$\large{ J_{z} = I_{x} + I_{y}{^2} }$$

$$\large{ J_{z1} = I_{x1} + I_{y1}{^2} }$$

Symbol English Metric
$$\large{ J }$$ = torsional constant $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$

## Radius of Gyration of a Square T Beam formulas

$$\large{ k_{x} = \sqrt { \frac{ I_{x} }{ A } } }$$

$$\large{ k_{y} = \sqrt { \frac{ I_{y} }{ A } } }$$

$$\large{ k_{z} = \sqrt { k_{x}{^2} + k_{y}{^2} } }$$

$$\large{ k_{x1} = \sqrt { \frac{ I_{x1} }{ A } } }$$

$$\large{ k_{y1} = \sqrt { \frac{ I_{y1} }{ A } } }$$

$$\large{ k_{z1} = \sqrt { k_{x1}{^2} + k_{y1}{^2} } }$$

Symbol English Metric
$$\large{ k }$$ = radius of gyration $$\large{ in }$$ $$\large{ mm }$$
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$

## Second Moment of Area of a Square T Beam formulas

$$\large{ I_{x} = \frac{ t\;C_{y}{^3} \;+\; w \; \left( l \;-\; C_y \right)^3 \;-\; \left( w \;-\; t \right) \; \left( l \;-\; C_y \;-\; s \right)^3 }{3} }$$

$$\large{ I_{x} = \frac{ h\;t^3 }{12} + \frac{ w^3 \;s }{12} }$$

$$\large{ I_{x1} = I_{x} + A \;C_{y} }$$

$$\large{ I_{y1} = I_{y} + A\; C_{x} }$$

Symbol English Metric
$$\large{ I }$$ = moment of inertia $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ A }$$ = area $$\large{ in^2 }$$ $$\large{ mm^2 }$$
$$\large{ C }$$ = distance from centroid $$\large{ in }$$ $$\large{ mm }$$
$$\large{ h }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = width $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

## Torsional Constant of a Square T Beam formula

$$\large{ J = \frac{ w\;s^3 \;+\; l \;-\; \left( \frac {s}{2} \right) \; t^3 }{3} }$$
Symbol English Metric
$$\large{ J }$$ = torsional constant $$\large{ in^4 }$$ $$\large{ mm^4 }$$
$$\large{ l }$$ = height $$\large{ in }$$ $$\large{ mm }$$
$$\large{ t }$$ = thickness $$\large{ in }$$ $$\large{ mm }$$
$$\large{ s }$$ = width $$\large{ in }$$ $$\large{ mm }$$
$$\large{ w }$$ = width $$\large{ in }$$ $$\large{ mm }$$

Tags: Structural Steel