Skip to main content

T beam square 1Square T-beam, also called T-shaped beam or Tee beam, is a type of structural beam with a T-shaped cross-sectional profile.  Unlike a standard I-beam that has a central vertical web and horizontal flanges at the top and bottom, a T-beam has a vertical stem and a horizontal flange extending from the stem at the top.  This configuration creates a cross-sectional shape that resembles the letter "T."  A Square T-beam is characterized by having equal-length stem and flange portions, resulting in a symmetrical T-shape.  The stem and flange can have varying dimensions and thicknesses, depending on the specific load bearing requirements and design considerations of the structure.

 

area of a Square T Beam formula

\( A \;=\;  w\cdot s + h\cdot t  \)
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( s \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Distance from Centroid of a Square T Beam formulas

\( C_x \;=\;  0  \)

\( C_y \;=\;  \dfrac{  l^2\cdot t + s^2 \cdot \left( w - t  \right)  }{ 2\cdot \left( w\cdot s + h\cdot t  \right)  }  \)

Symbol English Metric
\( C \) = distance from centroid  \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( h \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( s \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Elastic section Modulus of a Square T Beam formulas

\( S_{x} \;=\;  \dfrac { I_{x} }{ C_{y}   } \) 

\( S_{y} \;=\;  \dfrac { I_{y} }{ C_{x}   } \) 

Symbol English Metric
\( S \) = elastic section modulus \( in^3 \) \( mm^3 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Perimeter of a Square T Beam formula

\( P \;=\;  2\cdot  \left( w + h + s  \right) \) 
Symbol English Metric
\( P \) = perimeter \( in \) \( mm \)
\( h \) = height \( in \) \( mm \)
\( s \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Polar Moment of Inertia of a Square T Beam formulas

\( J_{z} \;=\;  I_{x}  +  I_{y}{^2} \) 

\( J_{z1} \;=\;  I_{x1}  +  I_{y1}{^2} \) 

Symbol English Metric
\( J \) = torsional constant \( in^4 \) \( mm^4 \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Radius of Gyration of a Square T Beam formulas

\( k_{x} \;=\;  \sqrt{  \dfrac{ I_{x} }{ A  }   }   \) 

\( k_{y} \;=\;  \sqrt{  \dfrac{ I_{y} }{ A  }   }   \) 

\( k_{z} \;=\;    \sqrt{  k_{x}{^2} + k_{y}{^2}  } \) 

\( k_{x1} \;=\;  \sqrt{  \dfrac{ I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;  \sqrt{  \dfrac{ I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  } \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Second Moment of Area of a Square T Beam formulas

\( I_{x} \;=\;   \dfrac{  t\cdot C_{y}{^3} + w \cdot \left( l - C_y \right)^3  -  \left( w - t \right) \cdot  \left( l - C_y - s \right)^3 }{3}   \) 

\( I_{x} \;=\;   \dfrac{ h\cdot t^3  }{12}   +    \dfrac{ w^3 \cdot s  }{12}    \) 

\( I_{x1} \;=\;  I_{x}  +  A \cdot C_{y} \) 

\( I_{y1} \;=\;  I_{y}  +  A\cdot C_{x} \)

Symbol English Metric
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( h \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( s \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Torsional Constant of a Square T Beam formula

\( J  \;=\;   \dfrac{  w\cdot s^3 + l -  \left(  \dfrac {s}{2}  \right) \cdot  t^3  }{3}     \) 
Symbol English Metric
\( J \) = torsional constant \( in^4 \) \( mm^4 \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( s \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Piping Designer Logo 1