Skip to main content

Rectangular Angle

L beam rectangular 1Rectangular angle, also called angle or angle iron, is a L-shaped structural member with rectangular legs.  An angle iron has an L-shaped cross-section formed by bending a piece  of steel at a 90-degree angle.  This type of angle iron has unequal length sides forming a 90-degree corner.  It's commonly used as a structural component in various construction and engineering applications due to its rigidity and load-bearing capacity.

 

Area of a Rectangular Angle Formula

\( A \;=\;     t \cdot \left( w  +  d \right)  \)
Symbol English Metric
\( A \) = area \( in^2 \) \( mm^2 \)
\( d \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Distance from Centroid of a Rectangular Angle Formulas

\( C_x \;=\;   \dfrac{ t \cdot \left( 2\cdot c  +  l \right)  +  c^2  }{ 2 \cdot \left( c  +  l  \right)  }  \)

\( C_y \;=\;   \dfrac{ t \cdot \left( 2\cdot d  +  w \right)  +  d^2  }{ 2 \cdot \left( d  +  w  \right)  }   \) 

Symbol English Metric
\( C \) = distance from centroid \( in \) \( mm \)
\( d \) = height \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( c \) = width \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Elastic Section Modulus of a Rectangular Angle Formulas

\( S_x \;=\;   \dfrac{ I_x }{ C_y   } \) 

\( S_y \;=\;   \dfrac{ I_y }{ C_x   } \) 

Symbol English Metric
\( S \) = elastic section modulus \( in^3 \) \( mm^3 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)

 

Perimeter of a Rectangular Angle Formula

\( P \;=\;     2 \cdot \left( w  +  l \right)  \) 
Symbol English Metric
\( P \) = perimeter \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Polar Moment of Inertia of a Rectangular Angle Formulas

\( J_z \;=\;   I_x  +  I_y \) 

\( J_{z1} \;=\;   I_{x1}  +  I_{y1} \) 

Symbol English Metric
\(\large{ J }\) = torsional constant \( in^4 \) \( mm^4 \)
\(\large{ I }\) = moment of inertia \( in^4 \) \( mm^4 \)

 

Radius of Gyration of a Rectangular Angle Formulas

\( k_x \;=\;   \dfrac{   t\cdot y^3 +  w \cdot \left( l - y  \right)^3   -  \left( w - t  \right)  \cdot \left( l - y - t  \right)^3   }{ 3\cdot t \cdot \left( w  +  l - t  \right)  }     \) 

\( k_y \;=\;      \dfrac{   t\cdot z^3  +  l \cdot \left( w - z  \right)^3   -  \left( l - t  \right) \cdot \left( w - z - t  \right)^3   }{ 3\cdot t  \cdot \left( w  +  l - t  \right)  }     \) 

\( k_z \;=\;    \sqrt{  k_{x}{^2} + k_{y}{^2}  } \)

\( k_{x1} \;=\;   \sqrt{  \dfrac { I_{x1} }{ A  }   }   \)

\( k_{y1} \;=\;   \sqrt{  \dfrac { I_{y1} }{ A  }   }   \)

\( k_{z1} \;=\;    \sqrt{  k_{x1}{^2} + k_{y1}{^2}  }  \)

Symbol English Metric
\( k \) = radius of gyration \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( y \) = height \( in \) \( mm \)
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)
\( z \) = width \( in \) \( mm \)

 

Second Moment of Area of a Rectangular Angle Formulas

\( I_x \;=\;     \dfrac{  t\cdot y^3  + w \cdot \left( l - y \right)^3  -  \left(  w - t \right)  \cdot  \left( l - y  - t \right)^3   }{3}   \) 

\( I_y \;=\;    \dfrac{  t\cdot z^3  + l \cdot \left( w - z \right)^3  -  \left(  l - t \right)  \cdot  \left( w - z  - t \right)^3   }{3}   \) 

\( I_{x1} \;=\;    I_x  +  A\cdot C_{y}{^2} \) 

\( I_{y1} \;=\;    I_y  +  A \cdot C_{x}{^2} \)

Symbol English Metric
\( I \) = moment of inertia \( in^4 \) \( mm^4 \)
\( A \) = area \( in^2 \) \( mm^2 \)
\( C \) = distance from centroid \( in \) \( mm \)
\( l \) = height \( in \) \( mm \)
\( y \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)
\( z \) = width \( in \) \( mm \)

 

Tortional Constant of a Rectangular Angle Formula

\( J  \;=\;     \dfrac{ \left[  d - \left(  \dfrac{t}{2} \right)  \right]   +  \left[  w - \left(  \dfrac{t}{2}  \right)  \right] \cdot t^3 }{  3  }  \) 
Symbol English Metric
\( J \) = torsional constant \( in^4 \) \( mm^4 \)
\( d \) = height \( in \) \( mm \)
\( t \) = thickness \( in \) \( mm \)
\( w \) = width \( in \) \( mm \)

 

Piping Designer Logo 1